留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚对苯二甲酸丁二醇酯二聚体热降解机理的理论研究

罗小松 黄金保 吴雷 金礼 徐伟伟 严夏

罗小松, 黄金保, 吴雷, 金礼, 徐伟伟, 严夏. 聚对苯二甲酸丁二醇酯二聚体热降解机理的理论研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60043-4
引用本文: 罗小松, 黄金保, 吴雷, 金礼, 徐伟伟, 严夏. 聚对苯二甲酸丁二醇酯二聚体热降解机理的理论研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60043-4
LUO Xiao-song, HUANG Jin-bao, WU Lei, JIN Li, XU Wei-wei, YAN Xia. Theoretical study on thermal degradation mechanism of polybutylene terephthalate dimer[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60043-4
Citation: LUO Xiao-song, HUANG Jin-bao, WU Lei, JIN Li, XU Wei-wei, YAN Xia. Theoretical study on thermal degradation mechanism of polybutylene terephthalate dimer[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60043-4

聚对苯二甲酸丁二醇酯二聚体热降解机理的理论研究

doi: 10.1016/S1872-5813(22)60043-4
基金项目: 贵州省高等学校特色重点实验室建设项目(KY[2021]003),贵州省科学技术基金(ZK[2021]278, ZK[2022]198)和贵州省普通高等学校青年科技人才成长项目(KY[2021]120)资助
详细信息
    通讯作者:

    Tel: 18212008607, E-mail: huangjinbao76@ 126.com

  • 中图分类号: TQ519

Theoretical study on thermal degradation mechanism of polybutylene terephthalate dimer

Funds: The project was supported by the Construction Project of Characteristic Key Laboratory in Guizhou Colleges and Universities [KY(2021)003], the Science and Technology Funds of Guizhou province [ZK(2021)278, ZK[2022]198], Youth Science and Technology Talent Project in Guizhou Colleges and Universities under [KY(2021)120]
More Information
  • 摘要: 采用密度泛函理论(DFT)方法M06-2X/6-311G(d)研究了聚对苯二甲酸丁二醇酯(PBT)二聚体的热降解机理,对PBT二聚体热解过程设计了八条可能反应路径,计算了每条反应路径的各基元反应步的热力学及动力学参数。计算结果表明,在PBT初始热解过程中,主链发生协同反应的反应能垒明显低于自由基反应的能垒,因此,通过协同反应生成的对苯二甲酸、对苯二甲酸单丁烯酯、对苯二甲酸二丁烯酯和二对苯二甲酸-1,4-丁二酯是PBT初始热解主要产物。主链通过六元环过渡态进行的协同反应的反应能垒低于通过四元环过渡态的,PBT主链的断裂主要通过六元环过渡态的协同反应而进行。此外,还讨论了PBT主要产物的二次降解反应,研究发现,在二次降解反应过程中主要以协同反应为主,生成1,3-丁二烯、四氢呋喃、苯、CO2、苯甲酸等主要产物。
  • 图  1  PBT二聚体的优化结构和键离能值

    Figure  1  BDE values and optimal structure of PBT dimer (unit: kJ/mol )

    图  2  反应路径(1)中的可能降解过程示意图

    Figure  2  Proposed decomposition process in reaction path (1)

    图  3  反应路径(1)的能垒示意图

    Figure  3  Energy barriers schematic diagram of reaction path (1)

    图  4  反应路径(2)中的可能降解过程示意图

    Figure  4  Proposed decomposition process in reaction path (2)

    图  5  反应路径(2)的能垒示意图

    Figure  5  Schematic diagram of energy barriers in reaction path (2)

    图  6  反应路径(3)中的可能降解过程示意图

    Figure  6  Proposed decomposition process in reaction path (3)

    图  7  反应路径(3)的能垒示意图

    Figure  7  Schematic diagram of energy barriers in reaction path (3)

    图  8  反应路径(4)中的可能降解过程示意图

    Figure  8  Proposed decomposition process in reaction path (4)

    图  9  反应路径(4)的能垒示意图

    Figure  9  Schematic diagram of energy barriers in reaction path (4)

    图  10  反应路径(5)中的可能降解过程示意图

    Figure  10  Proposed decomposition process in reaction path (5)

    图  11  反应路径(5)的能垒示意图

    Figure  11  Schematic diagram of energy barriers in reaction path (5)

    图  12  反应路径(6)中的可能降解过程示意图

    Figure  12  Proposed decomposition process in reaction path (6)

    图  13  反应路径(6)的能垒示意图

    Figure  13  Schematic diagram of energy barriers in reaction path (6)

    图  14  对苯二甲酸降解反应路径示意图

    Figure  14  Reaction pathway of terephthalate acid degradation

    图  15  对苯二甲酸降解的反应能垒示意图

    Figure  15  Energy barriers of terephthalate acid degradation

    图  16  反应路径(8)中的可能降解过程示意图

    Figure  16  Proposed decomposition process in reaction path (8)

    图  17  反应路径(8)的能垒示意图

    Figure  17  Schematic diagram of energy barriers in reaction path (8)

    表  1  各热解路径中过渡态唯一的虚频

    Table  1  Sole imaginary frequency of various translates

    Freq. i/cm−1
    TS1TS2TS3TS4TS5TS6TS7TS8
    −89.58 −1443.48 −60.14 −1406.55 −89.01 −64.48 −1478.36 −76.92
    TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16
    −1426.85 −73.06 −1415.01 −86.88 −1017.01 −1135.73 −1015.16 −1908.39
    TS17 TS18 TS19 TS20 TS21 TS22 TS23 TS24
    −1106.42 −1909.65 −1017.91 −1859.80 −446.01 −1755.78 −1179.75 −58.67
    TS25 TS26 TS27 TS28 TS29 TS30 TS31 TS32
    −1461.59 −87.20 −1168.96 −65.87 −1535.27 −45.51 −1482.76 −1171.92
    TS33 TS34 TS35 TS36 TS37 TS38 TS39 TS40
    −516.58 −1897.99 −540.57 −859.71 −152.44 −467.65 −539.92 −885.34
    TS41 TS42 TS43 TS44 TS45 TS46 TS47 TS48
    −466.44 −154.37 −440.04 −608.36 −464.81 −1904.35 −125.15 −137.97
    TS49 TS50 TS51
    −234.88 −2034.71 −1800.56
    下载: 导出CSV
  • [1] PASSALACQUA V, PILATI F, ZAMBONI V, FORTUNATO B, MANARESI P. Thermal degradation of poly (butylene terephthalate)[J]. Polymer,1976,17(12):1044−1048. doi: 10.1016/0032-3861(76)90004-5
    [2] SABLONG R, DUCHATEAU R, KONING C E, POSPIECH D, KORWITZ A, KOMBER H, DER LANDWEHR M A. Incorporation of a flame retardancy enhancing phosphorus-containing diol into poly (butylene terephthalate) via solid state polycondensation: A comparative study[J]. Polym Degrad Stabil,2011,96(3):334−341. doi: 10.1016/j.polymdegradstab.2010.07.001
    [3] NOGALES A, SANZ A, EZQUERRA T A, QUINTANA R, MUÑOZ-GUERRA S. Molecular dynamics of poly (butylene tert-butyl isophthalate) and its copolymers with poly (butylene terephthalate) as revealed by broadband dielectric spectroscopy[J]. Polymer,2006,47(20):7078−7084. doi: 10.1016/j.polymer.2006.07.044
    [4] CHO M, YANG J, NOH S, JOE H, HAN M. Production of PBT (polybutylene terephthalate) oligomer from recycled PET (polyethylene terephthalate)[J]. Korean J Chem Eng,2016,54(4):437−442. doi: 10.9713/kcer.2016.54.4.437
    [5] HUANG J, YANG J, CHYU M K, WANG Q, ZHU Z. Continuous-distribution kinetics for degradation of polybutylene terephthalate (PBT) in supercritical methanol[J]. Polym Degrad Stabil,2009,94(12):2142−2148. doi: 10.1016/j.polymdegradstab.2009.09.011
    [6] ZHOU Z, YIN N, ZHANG Y, ZHANG Y. Properties of poly (butylene terephthalate) chain-extended by epoxycyclohexyl polyhedral oligomeric silsesquioxane[J]. J Appl Polym Sci,2008,107(2):825−830. doi: 10.1002/app.27106
    [7] YOSHIOKA T, GRAUSE G, OTANI S, OKUWAKI A. Selective production of benzene and naphthalene from poly(butylene terephthalate) and poly(ethylene naphthalene-2, 6-dicarboxylate) by pyrolysis in the presence of calcium hydroxide[J]. Polym Degrad Stabil,2006,91(5):1002−1009. doi: 10.1016/j.polymdegradstab.2005.08.010
    [8] 刘丽, 戴娟娟, 黄园园, 柳颖萍, 林春绵, 潘志彦. 聚对苯二甲酸丁二醇酯在亚临界水中的催化解聚[J]. 高校化学工程学报,2012,26(3):524−530. doi: 10.3969/j.issn.1003-9015.2012.03.027

    LIU Li, DAI Juan-juan, HUANG Yuan-yuan, LIU Ying-ping, LIN Chun-mian, PAN Zhi-yan. Catalytic depolymerization of polybutylene terephthalate in subcritical water[J]. J Chem Eng Chin Univ,2012,26(3):524−530. doi: 10.3969/j.issn.1003-9015.2012.03.027
    [9] YANG W, SONG L, HU Y, LU H, YUEN R K. Investigations of thermal degradation behavior and fire performance of halogen-free flame retardant poly(1, 4-butylene terephthalate) composites[J]. J Appl Polym Sci,2011,122(3):1480−1488. doi: 10.1002/app.34119
    [10] LAVILLA C, ALLA A, DE ILARDUYA A M, BENITO E, GARCÍA-MARTÍN M D G, GALBIS J A, MUÑOZ-GUERRA S. Bio-based poly (butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties[J]. Polymer,2012,53(16):3432−3445. doi: 10.1016/j.polymer.2012.05.048
    [11] LÜDERWALD I, URRUTIA H. Strukturuntersuchung von polyestern durch direkten abbau im massenspektrometer, 2. aliphatische polyester[J]. Macromo Chem And Phys,1976,177(7):2093−2111. doi: 10.1002/macp.1976.021770716
    [12] MA C, WANG J, YUAN Y, MU X, PAN Y, SONG L, HU Y. An insight into gas phase flame retardant mechanisms of AHP versus AlPi in PBT: Online pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry[J]. Combust Flame,2019,209:467−477. doi: 10.1016/j.combustflame.2019.08.020
    [13] XIONG-FEI Y U. Identification of PET and PBT by pyrolysis gas chromatography[J]. C J S L,2005,22(2):319−321.
    [14] MANABE N, YOKOTA Y. The method for analyzing anhydride formed in poly (butylene terephthalate) during thermal and photo-degradation processes and applications for evaluation of the extent of degradation[J]. Polym Degrad Stabil,2000,69(2):183−190. doi: 10.1016/S0141-3910(00)00059-8
    [15] SÁNCHEZ-JIMÉNEZ P E, PÉREZ-MAQUEDA L A, PEREJÓN A, CRIADO J M. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission[J]. Polym Degrad Stabil,2010,95(5):733−739. doi: 10.1016/j.polymdegradstab.2010.02.017
    [16] CARROCCIO S, RIZZARELLI P, SCALTRO G, PUGLISI C. Comparative investigation of photo-and thermal-oxidation processes in poly (butylene terephthalate)[J]. Polymer,2008,49(16):3371−3381. doi: 10.1016/j.polymer.2008.05.015
    [17] VIJAYAKUMAR C T, FINK J K. Pyrolysis studies of aromatic polyesters[J]. Thermochim Acta,1982,59(1):51−61. doi: 10.1016/0040-6031(82)87092-5
    [18] KOSHIDUKA T, OHKAWA T, TAKEDA K. Computer simulation of thermal degradation of poly(butylene terephthalate) and analytical problems of terephthalic acid in scission products[J]. Polym Degrad Stabil,2003,79(1):1−11. doi: 10.1016/S0141-3910(02)00228-8
    [19] SAMPERI F, PUGLISI C, ALICATA R, MONTAUDO G. Thermal degradation of poly (butylene terephthalate) at the processing temperature[J]. Polym Degrad Stabil,2004,83(1):11−17. doi: 10.1016/S0141-3910(03)00167-8
    [20] XU J L, MA B X, KANG C H, XU C C, CHEN Z, LIN Y G. Thermal decomposition kinetics of flame retardant polybutylene terephthalate matrix composites[C]//Mater Sci Forum, 2019, 956: 181−191.
    [21] MCNEILL I C, BOUNEKHEL M. Thermal degradation studies of terephthalate polyesters: 1. Poly(alkylene terephthalates)[J]. Polym Degrad Stabil,1991,34(1):187−204.
    [22] QU H, LIU X, XU J, MA H, JIAO Y, XIE J. Investigation on thermal degradation of poly (1, 4-butylene terephthalate) filled with aluminum hypophosphite and trimer by thermogravimetric analysis-fourier transform infrared spectroscopy and thermogravimetric analysis-mass spectrometry[J]. Ind Eng Chem Res,2014,53(20):8476−8483. doi: 10.1021/ie404297r
    [23] PELLOW-JARMAN M, HETEM M. Comparison of the thermal degradation products of poly (butylene terephthalate) and flame retardant poly (butylene terephthalate) formulations using a pyrolysis FTIR cell[J]. Polym Degrad Stabil,1995,47(3):413−421. doi: 10.1016/0141-3910(95)00006-2
    [24] MONTAUDO G, PUGLISI C, SAMPERI F. Primary thermal degradation mechanisms of PET and PBT[J]. Polym Degrad Stabil,1993,42(1):13−28. doi: 10.1016/0141-3910(93)90021-A
    [25] LÜDERWALD I, URRUTIA H. Strukturuntersuchung von polyestern durch direkten abbau im massenspektrometer, 1. polyester der terephthalsure[J]. Macromol Chem Phys,1976,177(7):2079−2091. doi: 10.1002/macp.1976.021770715
    [26] SONO M, KINASHI K, SAKAI W, TSUTSUMI N. Spin-trapping analysis of thermal degradation reaction of poly(butylene terephthalate)[J]. Macromolecules,2017,50(1):254−263. doi: 10.1021/acs.macromol.6b01942
    [27] CHIU S J, WU Y S. A comparative study on thermal and catalytic degradation of polybutylene terephthalate[J]. J Anal Appl Pyrolysis,2009,86(1):22−27. doi: 10.1016/j.jaap.2009.03.003
    [28] 钱和生. 聚对苯二甲酸丁二酯纤维热裂解分析[J]. 合成纤维工业,2007,30(4):60−62. doi: 10.3969/j.issn.1001-0041.2007.04.020

    QIAN He-sheng. Analysis of thermal cracking of polybutylene terephthalate fibers[J]. China Synt Fibe Ind,2007,30(4):60−62. doi: 10.3969/j.issn.1001-0041.2007.04.020
    [29] FARROKHPOUR H, JOUYPAZADEH H. Description of adenine and cytosine on au (111) nano surface using different DFT functionals (PW91PW91, wB97XD, M06-2X, M06-L and CAM-B3LYP) in the framework of ONIOM scheme: Non-periodic calculations[J]. Chem Phys,2017,488:1−10.
    [30] WALKER M, HARVEY A J, SEN A, DESSENT C E. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions[J]. J Phys Chem A,2013,117(47):12590−12600. doi: 10.1021/jp408166m
    [31] FRISCH M J, TRUCKS G W, SCHLEGEL J, SCUSERIA G E, ROBB M A, CHEESEMAN J R. Gaussian 09, revision C. 01. 2010.
    [32] HUANG J, MU X, LUO X, MENG H, WANG H, JIN L, LAI B. DFT studies on pyrolysis mechanisms of tetrabromobisphenol A (TBBPA)[J]. Environ Sci Pollut R,2021,28(48):68817−68833. doi: 10.1007/s11356-021-15426-9
    [33] HUANG J, MENG H, LUO X, MU X, XU W, JIN L, LAI B. Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method[J]. Chemosphere,2022,291:133112. doi: 10.1016/j.chemosphere.2021.133112
    [34] BROOKS C T, PEACOCK S J, REUBEN B G. Pyrolysis of benzene[J]. J Chem Soc, Faraday Trans 1,1979,75:652−662. doi: 10.1039/f19797500652
    [35] YINHE S U, WANG X, JUNRONG Y U, WANG Y, ZHU J, ZUMING H U. Effect of initiator content on the polymerization kinetics of cyclic butylene terephthalate and resultant polymer[J]. J Donghua Univ (Nat Sci),2018,41(3):366−385.
    [36] VIJAYAKUMAR C T, PONNUSAMY E, BALAKRISHNAN T, KOTHANDARAMAN H. Thermal and pyrolysis studies of copolyesters[J]. J Polym Sci Part A Polym Chem,1982,20(9):2715−2725. doi: 10.1002/pol.1982.170200929
    [37] BOTELHO G, QUEIRÓS A, LIBERAL S, GIJSMAN P. Studies on thermal and thermo-oxidative degradation of poly (ethylene terephthalate) and poly (butylene terephthalate)[J]. Polym Degrad Stabil,2001,74(1):39−48. doi: 10.1016/S0141-3910(01)00088-X
    [38] SAMPERI F, PUGLISI C, ALICATA R, MONTAUDO G. Thermal degradation of poly (ethylene terephthalate) at the processing temperature[J]. Polym Degrad Stabil,2004,83(1):3−10. doi: 10.1016/S0141-3910(03)00166-6
    [39] KINOSHITA R, TERAMOTO Y, YOSHIDA H. Kinetic analysis of the thermal decomposition of polyesters by simultaneous TG-DTA/FT-IR[J]. Thermochim Acta,1993,222(1):45−52. doi: 10.1016/0040-6031(93)80537-K
    [40] LUM R M. Thermal decomposition of poly (butylene terephthalate)[J]. J Polym Sci Part A Polym Chem,1979,17(1):203−213. doi: 10.1002/pol.1979.170170120
    [41] SATO H, KONDO K, TSUGE S, OHTANI H, SATO N. Mechanisms of thermal degradation of a polyester flame-retarded with antimony oxide/brominated polycarbonate studied by temperature-programmed analytical pyrolysis[J]. Polym Degrad Stabil,1998,62(1):41−48. doi: 10.1016/S0141-3910(97)00259-0
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 录用日期:  2022-06-10
  • 修回日期:  2022-06-09
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回