留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合TiO2直接苛化的黑液半焦与石油焦水蒸气共气化特性研究

王贵金 袁洪友 靳立军 李扬 杨赫 胡浩权

王贵金, 袁洪友, 靳立军, 李扬, 杨赫, 胡浩权. 耦合TiO2直接苛化的黑液半焦与石油焦水蒸气共气化特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60046-X
引用本文: 王贵金, 袁洪友, 靳立军, 李扬, 杨赫, 胡浩权. 耦合TiO2直接苛化的黑液半焦与石油焦水蒸气共气化特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60046-X
WANG Gui-jin, YUAN Hong-you, JIN Li-jun, LI Yang, YANG He, HU Hao-quan. Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60046-X
Citation: WANG Gui-jin, YUAN Hong-you, JIN Li-jun, LI Yang, YANG He, HU Hao-quan. Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60046-X

耦合TiO2直接苛化的黑液半焦与石油焦水蒸气共气化特性研究

doi: 10.1016/S1872-5813(22)60046-X
基金项目: 中央高校基本科研业务费(DUT21TD103),辽宁省“兴辽英才计划”(XLYC1908033)和大连市支持高层次人才创新创业项目计划(重点领域创新团队支持计划项目)(2019RT10)资助
详细信息
    通讯作者:

    Tel: 0411-84986157, E-mail: hhu@dlut.edu.cn

  • 中图分类号: TK6

Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization

Funds: The project was supported by the Fundamental Research Funds for the Central Universities (DUT21TD103), Liaoning Revitalization Talent Program (XLYC1908033) and Dalian Innovation Team Support Plan in Key Areas (2019RT10)
  • 摘要: 以黑液半焦(BLC)-苛化剂(TiO2)-石油焦(PC)三元混合物(BTP)为研究对象,借助热重分析仪和固定床反应器在850 ℃进行了恒温水蒸气气化实验,从反应速率、产气特性和残余固体特性等方面探究了耦合TiO2直接苛化的BLC和PC共气化过程。结果表明,源于mNa2nTiO2对有机碳气化反应的促进作用,与单独的TiO2直接苛化BLC气化和PC气化加权平均(BTPtheo)相比,耦合共气化过程表现出显著的协同效应。BTP最大反应速率达到7.0%/min,为BTPtheo的2.9倍;BTP产气中有效气组分(H2+CO)的含量及其产率分别为81.1%和2059 mL/g,气体热值为9343 kJ/m3,相对于BTPtheo分别提高6.8%、137.3%和5.5%;BTP的碳转化率和能源输出比分别为95.0%和1.13,相比BTPtheo,分别提高61.6%和135.4%。此外,BTP在气化过程中的无机盐损失得到有效控制,相对损失率约9.4%;BTP残余固体中的Na盐以高热稳定性的mNa2nTiO2为主,并保持颗粒状,有利于后续的碱回收。
  • 图  1  水蒸气气化实验装置流程图

    Figure  1  Flow diagram of experimental apparatus for steam gasification

    图  2  TiO2直接苛化的BLC与PC的850 ℃恒温水蒸气共气化(a)及升温共热解(b)的TG-DTG曲线

    Figure  2  Experimental and calculative TG-DTG curves of isothermal steam co-gasification at 850 ℃ (a) and non-isothermal co-pyrolysis (b) of BTP

    图  3  850 ℃热处理前后BTP的XRD谱图

    Figure  3  XRD patterns of BTP before and after heat-treatment at 850 ℃

    图  4  850 ℃热处理前(a)后(b)的BTP的SEM照片

    Figure  4  SEM images of BTP before (a) and after (b) heat-treatment at 850 ℃

    图  5  不同添加物对BLC热化学转化过程无机盐损失的影响

    Figure  5  Effect of various additives on inorganic salts loss during the thermochemical conversion process of BLC

    图  6  BLC在850 ℃热处理前后的XRD谱图

    Figure  6  XRD patterns of BLC before and after heat-treatment at 850 ℃

    图  7  BLC在850 ℃热处理前(a)后(b)的SEM照片

    Figure  7  SEM images of BLC before (a) and after (b) heat-treatment at 850 ℃

    图  8  不同固体反应物水蒸气气化的产气特性

    Figure  8  Characteristics of gaseous products from steam gasification of different solid reactants (a): yield of each gas component; (b): H2/CO and CO/CO2; (c): content and yield of the effective gas components (H2+CO); (d): lower heating value of gas (LHVgas)

    图  9  不同固体反应物水蒸气气化的碳转化率(xC)和能源输出比(EOR)

    Figure  9  Carbon conversion (xC) and energy output ratio (EOR) for the steam gasification of different solid reactants

    图  10  850 ℃水蒸气气化残余固体的SEM照片

    Figure  10  SEM images of the steam gasification residues at 850 ℃

    (a): GRBLC; (b): GRBT; (c): GRBTP(images inside the circles are magnified by 50 times for those outside the circles)

    图  11  850 ℃水蒸气气化残余固体的XRD谱图

    Figure  11  XRD patterns of the steam gasification residues at 850 ℃

    表  1  黑液半焦与石油焦的基本分析

    Table  1  Fundamental analyses of the black liquor char (BLC) and petroleum coke (PC)

    SampleUltimate analysis wdaf/%H/CO/CProximate analysis wd/%QLHV/(MJ·kg−1, d)
    CHNSO*AVFC*
    BLC74.222.650.911.9420.280.430.2064.911.024.17.13
    PC91.043.082.230.702.950.410.020.49.090.635.01
    * by difference; d: dry basis; daf: dry ash-free basis; A: ash; V: volatile matter; FC: fixed carbon; LHV: lower heating value
    下载: 导出CSV
  • [1] SRICHAROENCHAIKUL V, FREDERICK WJ, AGRAWAL P. Carbon distribution in char residue from gasification of kraft black liquor[J]. Biomass Bioenergy,2003,25(2):209−220. doi: 10.1016/S0961-9534(02)00193-9
    [2] AZADI P, INDERWILDI OR, FARNOOD R, KING DA. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable Sustainable Energy Rev,2013,21:506−523. doi: 10.1016/j.rser.2012.12.022
    [3] BERGLIN N, BERNTSSON T. CHP in the pulp industry using black liquor gasification: Thermodynamic analysis[J]. Appl Therm Eng,1998,18(11):947−961. doi: 10.1016/S1359-4311(98)00038-6
    [4] CONNOLLY T S. CO2 pyrolysis and gasification of kraft black liquor char[D]. Orono, ME (United States): The University of Maine, 2006.
    [5] PELS J R, ZENG L, VAN HEININGEN A R P. Direct causticization of kraft black liquor with 2 in a fluidized bed - Identification and analysis of sodium titanates[J]. J Pulp Pap Sci,1997,23(12):549−554.
    [6] ZENG LE, PELS, J. R. , VAN HEININGEN, A. R. P. Direct causticization of kraft black liquor solids with TiO2 in a fluidized bed [J]. Tappi J, 2000, 83(12).
    [7] NOHLGREN I, SRICHAROENCHAIKUL V, SINQUEFIELD S, THELIANDER H, FREDERICK WJ. Black liquor gasification with direct causticization using titanates in a pressurized entrained-flow reactor. part II: Carbon and carbon species transitions[J]. J Pulp Pap Sci,2003,29(10):348−355.
    [8] NAQVI M, YAN J, DAHLQUIST E. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture[J]. Bioresour Technol,2012,110:637−644. doi: 10.1016/j.biortech.2012.01.070
    [9] CHEN X, VAN HEININGEN A. R. P. Kinetics of the direct causticizing reaction between sodium carbonate and titanium dioxide or sodium trititanate[J]. J Pulp Pap Sci,2006,32(4):245−251.
    [10] NOHLGREN I, THELIANDER H, ZHUANG Q, VAN HEININGEN A. R. P. Model study of the direct causticization reaction between sodium trititanate and sodium carbonate[J]. Can J Chem Eng,2000,78(3):529−539. doi: 10.1002/cjce.5450780312
    [11] YUAN H, WU S, YIN X, GUO D, WANG G, ZHOU Z, WU C. Effects of silica on chemical recovery in the direct causticization of wheat straw black liquor[J]. Tappi J,2016,15(8):557−566. doi: 10.32964/TJ15.8.557
    [12] DAHLQUIST E, JONES A. Presentation of a dry black liquor gasification process with direct causticization[J]. Tappi J,2005,4(6):15−19.
    [13] WANG G, YUAN H, GUO D, ZHOU Z, YIN X, WU C. Effects of titanium dioxide as direct causticization agent on the pyrolysis and steam gasification characteristics of straw black liquor solid[J]. Tappi J,2015,14(6):361−369. doi: 10.32964/TJ14.6.361
    [14] ZENG L, VAN HEININGEN A R P. Pilot fluidized-bed testing of kraft black liquor gasification and its direct causticization with TiO2[J]. J Pulp Pap Sci,1997,23(11):511−516.
    [15] WANG M, WAN Y, GUO Q, BAI Y, YU G, LIU Y, ZHANG H, ZHANG S, WEI J. Brief review on petroleum coke and biomass/coal co-gasification: Syngas production, reactivity characteristics, and synergy behavior[J]. Fuel,2021,304:121517. doi: 10.1016/j.fuel.2021.121517
    [16] WANG B, LI W, MA C, YANG W, PUDASAINEE D, GUPTA R, SUN L. Synergistic effect on the co-gasification of petroleum coke and carbon-based feedstocks: A state-of-the-art review[J]. J Energy Inst,2022,102:1−13. doi: 10.1016/j.joei.2022.02.007
    [17] YANG H, SONG H, ZHAO C, HU J, LI S, CHEN H. Catalytic gasification reactivity and mechanism of petroleum coke at high temperature[J]. Fuel,2021,293:120469. doi: 10.1016/j.fuel.2021.120469
    [18] HE Q, YU J, SONG X, DING L, WEI J, YU G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components[J]. Energy,2020,192:116642. doi: 10.1016/j.energy.2019.116642
    [19] WEI J, GUO Q, GONG Y, DING L, YU G. Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification[J]. Renewable Energy,2020,155:111−120. doi: 10.1016/j.renene.2020.03.132
    [20] LI Y, YANG H, HU J, WANG X, CHEN H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel,2014,117:1174−1180. doi: 10.1016/j.fuel.2013.08.066
    [21] EDREIS EM, LI X, ATYA AH, SHARSHIR SW, ELSHEIKH AH, MAHMOUD NM, LUO G, YAO H. Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H2O co-gasification[J]. Int J Hydrogen Energy,2020,45(46):24502−24517. doi: 10.1016/j.ijhydene.2020.06.239
    [22] LI J, WANG Y, ZHU L, ZHANG Z, XIAO H. Experimental study on co-pyrolysis of petroleum coke and coals: Synergy effects and co-gasification reactivity[J]. Fuel,2020,279:118368. doi: 10.1016/j.fuel.2020.118368
    [23] SONG H, YANG H, ZHAO C, HU J, ZOU J, WU P, LI S, CHEN H. Co-gasification of petroleum coke with coal at high temperature: Effects of blending ratio and the catalyst[J]. Fuel,2022,307:121863. doi: 10.1016/j.fuel.2021.121863
    [24] 刘虎平, 张轩, 于敦喜, 于戈, 喻鑫, 吴建群, 徐明厚, 乔慧坡, 王泉斌. 煤/石油焦共气化过程中AAEM的催化转化行为[J]. 燃烧科学与技术,2020,26(2):105−112.

    LIU Hu-ping, ZHANG Xuan, YU Dun-xi, YU Ge, YU Xin, WU Jian-qun, XU Ming-hou, QIAO Hui-po, WANG Quan-bin. Catalytic characteristics and transformation of AAEMs during co-gasification of coal and petroleum coke[J]. J Combust Sci Technol,2020,26(2):105−112.
    [25] NEMANOVA V, ABEDINI A, LILIEDAHL T, ENGVALL K. Co-gasification of petroleum coke and biomass[J]. Fuel,2014,117:870−875. doi: 10.1016/j.fuel.2013.09.050
    [26] 邹建辉, 周志杰, 代正华, 刘海峰, 王辅臣, 于遵宏. 三种工业废料对石油焦CO2气化动力学的影响[J]. 燃料化学学报,2008,36(3):279−285. doi: 10.3969/j.issn.0253-2409.2008.03.005

    ZOU Jian-hui, ZHOU Zhi-jie, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen, YU Zun-hong. Effects of three industrial wastes on kinetic characteristics of petroleum coke-CO2 gasification[J]. J Fuel Chem Technol,2008,36(3):279−285. doi: 10.3969/j.issn.0253-2409.2008.03.005
    [27] ZHAN X, ZHOU Z, WANG F. Catalytic effect of black liquor on the gasification reactivity of petroleum coke[J]. Appl Energy,2010,87(5):1710−1715. doi: 10.1016/j.apenergy.2009.10.027
    [28] 王贵金, 袁洪友, 郭大亮, 周肇秋, 阴秀丽, 吴创之. 草浆黑液半焦与石油焦水蒸气共气化特性[J]. 石油学报(石油加工),2015,31(4):897−903.

    WANG Gui-jin, YUAN Hong-you, GUO Da-liang, ZHOU zhao-qiu, YIN Xiu-li, WU Chuang-zhi. Steam Co-gasification characteristics of wheat straw black liquor char and petroleum coke[J]. Acta Pet Sin Pet Process Sect,2015,31(4):897−903.
    [29] 周志杰, 熊杰, 展秀丽, 于广锁. 造纸黑液对石油焦-CO2气化的催化作用及动力学补偿效应[J]. 化工学报,2011,62(4):934−939.

    ZHOU Zhi-jie, XIONG Jie, ZHAN Xiu-li, YU Guang-suo. Catalysis of black liquor for petroleum coke-CO2 gasification and kinetic compensation effect[J]. J Chem Ind Eng (China),2011,62(4):934−939.
    [30] 于德平, 张玉明, 杨运泉, 高士秋, 许光文. 流化床中造纸黑液催化石油焦气化特性[J]. 石油学报(石油加工),2013,29(3):438−446.

    YU De-ping, ZHANG Yu-ming, YANG Yun-quan, GAO Shi-qiu, XU Guang-wen. Gasification characteristics of petroleum coke catalyzed by black liquor in a fluidized bed[J]. Acta Pet Sin Pet Process Sect,2013,29(3):438−446.
    [31] ZHANG Y, YAO M, GAO S, SUN G, XU G. Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed[J]. Appl Energy,2015,160:820−828. doi: 10.1016/j.apenergy.2015.01.009
    [32] DING L, DAI Z, WEI J, ZHOU Z, YU G. Catalytic effects of alkali carbonates on coal char gasification[J]. J Energy Inst,2017,90(4):588−601. doi: 10.1016/j.joei.2016.05.003
    [33] XU B, CAO Q, KUANG D, GASEM KA, ADIDHARMA H, DING D, FAN M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3-FeCO3[J]. J Energy Inst,2020,93(3):922−933. doi: 10.1016/j.joei.2019.08.004
    [34] MAGDELDIN M, JÄRVINEN M. Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation[J]. Appl Energy,2020,262:114558. doi: 10.1016/j.apenergy.2020.114558
    [35] FREDERICK WJ, IISA K, WAG K, REIS VV, BOONSONGSUP L, FORSSEN M, HUPA M. Sodium and sulfur release and recapture during black liquor burning[R]. Corvallis, OR (United States): Oregon State University, 1995.
    [36] TANG G, GU J, WEI G, HUANG Z, WU J, YUAN H, CHEN Y. Syngas production from cellulose solid waste by enhanced chemical looping gasification using Ca-Fe bimetallic oxygen carrier with porous structure[J]. Fuel,2022,322:124106. doi: 10.1016/j.fuel.2022.124106
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-22
  • 录用日期:  2022-06-23
  • 修回日期:  2022-06-23
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回