留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤液化铁基催化剂对煤焦气化特性影响和动力学研究

何清 李恒 王思敏 程晨 郭庆华 于广锁

何清, 李恒, 王思敏, 程晨, 郭庆华, 于广锁. 煤液化铁基催化剂对煤焦气化特性影响和动力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021072
引用本文: 何清, 李恒, 王思敏, 程晨, 郭庆华, 于广锁. 煤液化铁基催化剂对煤焦气化特性影响和动力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021072
HE Qing, LI Heng, WANG Si-min, Cheng Chen, GUO Qing-hua, YU Guang-suo. Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021072
Citation: HE Qing, LI Heng, WANG Si-min, Cheng Chen, GUO Qing-hua, YU Guang-suo. Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021072

煤液化铁基催化剂对煤焦气化特性影响和动力学研究

doi: 10.19906/j.cnki.JFCT.2021072
基金项目: 国家重点研发计划(2017YFB0602404)资助
详细信息
    作者简介:

    何清:hqenjoy@163.com

    通讯作者:

    E-mail: gqh@ecust.edu.cn

  • 中图分类号: TQ530.2

Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics

Funds: The project was supported by National Key R&D Program of China(2017YFB0602404)
  • 摘要: 气化技术有助于煤液化固体产物的资源化利用,其中常含有大量铁基催化剂。本文以哈密原煤和脱矿煤为原料,研究煤液化铁基催化剂对煤焦结构和气化反应性的影响。利用扫描电镜能谱仪和物理吸附仪研究煤焦表面形貌、元素分布和介孔特性,利用热重分析仪研究煤焦气化特性,采用model-fitting和model-free方法研究反应动力学。结果表明,脱矿和负载催化剂对煤焦表面附着物的影响较主体基质明显。负载催化剂的煤焦比表面积显著增加。铁基催化剂提升煤焦气化活性可归因于煤焦表面富集较多Fe和AAEMs等元素,以及比表面积的增大。负载催化剂的脱矿煤焦表现出较大的相对催化活性,且其对升温速率和碳转化率的变化不敏感。煤焦气化特性的差异将随升温速率的升高而减小。铁基催化剂可提高原煤焦的气化反应指前因子A,降低脱矿煤焦的反应活化能Ea。非等温条件下,煤焦气化反应活化能随转化率的增加而降低。根据模型拟合度和动力学补偿效应,随机孔模型是描述煤焦气化的最佳模型,且更适合于脱矿煤焦(催化)气化。
  • 图  1  煤焦表面形貌(a)HMc, (b)HMCc, (c) HMNc和(d) HMNCc

    Figure  1  Surface morphology of coal char (a)HMc, (b)HMCc, (c) HMNc and (d) HMNCc

    图  2  煤焦表面元素分布(a)主体基质(b)附着物

    Figure  2  Element distribution of coal char surface (a) matrix, (b) attachment

    图  3  煤焦非等温气化特性曲线 (a) HMc/HMCc (b) HMNc/HMNCc

    Figure  3  Non-isothermal gasification curves of coal char (a)HMc/HMCc (b) HMNc/HMNCc

    图  4  升温速率对气化反应特性的影响(a)峰值温度Tp(b)最大反应速率Rmax(c)反应指数G

    Figure  4  Effect of heating rates on gasification property (a) Peak temperature Tp, (b) Maximum reaction rate Rmax, (c) Gasification index G

    图  5  气化反应活化能随转化率变化

    Figure  5  Gasification Ea variation with conversion

    图  6  动力学补偿效应(HMc, 5 ℃/min为例)

    Figure  6  Kinetic compensation effect (HMc, 5 ℃/min as ana example)

    表  1  HM煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of HM coal

    SamplesProximate analysis (d, wt.%)Ultimate analysis (daf, wt.%)
    VAFC[C][H][O]*[N][S]
    HM48.767.2344.0265.655.9319.660.830.70
    HMc12.1210.8477.0483.951.101.911.240.96
    HMCc12.8417.5669.6078.541.150.511.191.04
    HMNc6.699.1184.2086.751.190.651.380.92
    HMNCc5.6713.6580.6882.461.130.231.151.38
    (V: volatile; A: ash; FC: fixed carbon; ad: air dry basis; daf: dry ash-free basis; *: by difference)
    下载: 导出CSV

    表  2  HM煤灰分组成

    Table  2  Ash composition of HM coal

    CaOSO3SiO2Al2O3Fe2O3Na2OMgOP2O5TiO2K2OResidual
    26.8916.8016.0615.4614.285.322.970.400.300.271.25
    下载: 导出CSV

    表  3  煤焦介孔结构参数

    Table  3  Mesopore parameters of coal char

    SamplesSSA(m2/g)PV (cm3/g)APD (nm)
    HMc0.100.00343.3
    HMCc170.420.1072.5
    HMNc0.270.00118.5
    HMNCc96.540.0622.5
    (SSA: specific surface area; PV: pore volume; APD: average pore distribution)
    下载: 导出CSV

    表  4  Model-fitting分析动力学参数 (lnA: min−1, Ea: kJ/mol)

    Table  4  Kinetic parameters of model-fitting analysis (lnA: min−1, Ea: kJ/mol)

    SamplesVMGMRPM
    lnAEaSSRlnAEaSSRlnAEaΨSSR
    HMc21.9216.60.56619.8200.00.21318.0186.64.170.092
    HMCc22.9221.50.56320.8204.50.27719.6195.72.760.231
    HMNc21.4219.80.11120.1210.00.05919.6205.30.830.031
    HMNCc20.9208.70.79719.1194.00.35516.9178.15.810.156
    下载: 导出CSV

    表  5  Model-free和动力学补偿分析参数 (lnA: min−1, Ea: kJ/mol)

    Table  5  Kinetic parameters of model-free and kinetic compensation effect analysis (lnA: min−1, Ea: kJ/mol)

    Samplesmodel-free analysisKCE analysis
    FriedmanVyazovkinKASlnAEaR2
    HMc171.82193.45192.7117.39182.110.998
    HMCc171.40203.14202.4618.47188.170.988
    HMNc198.92212.22211.5019.28206.820.999
    HMNCc167.68182.55181.7816.81177.730.999
    下载: 导出CSV
  • [1] 王明华, 蒋文化, 韩一杰. 现代煤化工发展现状及问题分析[J]. 化工进展,2017,36(8):2882−2887.
    [2] CHU X, LI W, LI B, CHEN H. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal[J]. Fuel,2008,87(2):211−215. doi: 10.1016/j.fuel.2007.04.014
    [3] ZHANG X, SONG X, WANG J, SU W, BAI Y, ZHOU B, YU G. CO2 gasification of Yangchangwan coal catalyzed by iron-based waste catalyst from indirect coal-liquefaction plant[J]. Fuel,2021,285:119228. doi: 10.1016/j.fuel.2020.119228
    [4] ZHAO D, LIU H, LU P, SUN B, GUO S, QIN M. DFT study of the catalytic effect of Fe on the gasification of char-CO2[J]. Fuel,2021,292.
    [5] LIU D, GAO J, WU S, QIN Y. Effect of char structures caused by varying the amount of FeCl3 on the pore development during activation[J]. RSC Advances,2016,6(90):87478−87485. doi: 10.1039/C6RA14712G
    [6] XU B, CAO Q, KUANG D, GASEM K A M, ADIDHARMA H, DING D, FAN M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3–FeCO3[J]. J Energy Inst,2020,93(3):922−933. doi: 10.1016/j.joei.2019.08.004
    [7] ZHANG F, SUN H, BI J, QU X, YAN S, ZHANG J, ZHANG J. The evolution of Fe and Fe-Ca catalysts during char catalytic hydrogasification[J]. Fuel,2019,257:116040. doi: 10.1016/j.fuel.2019.116040
    [8] LAHIJANI P, ZAINAL Z A, MOHAMED A R. Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char[J]. Thermochim Acta,2012,546:24−31. doi: 10.1016/j.tca.2012.07.023
    [9] YU G, YU D, LIU F, YU X, HAN J, WU J, XU M. Different catalytic action of ion-exchanged calcium in steam and CO2 gasification and its effects on the evolution of char structure and reactivity[J]. Fuel,2019,254.
    [10] HE Q, YU J, SONG X, DING L, WEI J, YU G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components[J]. Energy,2020,192:116642. doi: 10.1016/j.energy.2019.116642
    [11] HE Q, GUO Q, UMEKI K, DING L, WANG F, YU G. Soot formation during biomass gasification: A critical review[J]. Renew Sust Energ Rev,2021,139:110710. doi: 10.1016/j.rser.2021.110710
    [12] 林善俊, 周志杰, 霍威, 丁路, 于广锁. 内扩散对煤和石油焦水蒸气气化反应性能的影响[J]. 燃料化学学报,2014,8:905−912. doi: 10.3969/j.issn.0253-2409.2014.08.002
    [13] ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energ,2015,145:295−305. doi: 10.1016/j.apenergy.2015.01.098
    [14] MONTERROSO R, FAN M, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOWLER B, SUN Q. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification[J]. Fuel,2014,116:341−349. doi: 10.1016/j.fuel.2013.08.003
    [15] HE Q, DING L, GONG Y, LI W, WEI J, YU G. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresource Technol,2019,280:104−111. doi: 10.1016/j.biortech.2019.01.138
    [16] GUO Q, HUANG Y, HE Q, GONG Y, YU G. Analysis of Coal Gasification Reactivity, Kinetics, and Mechanism with Iron-Based Catalyst from Coal Liquefaction[J]. ACS Omega,2021,6(2):1584−1592. doi: 10.1021/acsomega.0c05425
    [17] ELLIS N, MASNADI M S, ROBERTS D G, KOCHANEK M A, ILYUSHECHKIN A Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chem Eng J,2015,279:402−408. doi: 10.1016/j.cej.2015.05.057
    [18] LIANG D, XIE Q, ZHOU H, YANG M, CAO J, ZHANG J. Catalytic effect of alkali and alkaline earth metals in different occurrence modes in Zhundong coals[J]. Asia-Pac J Chem Eng,2018,13(3):e2190. doi: 10.1002/apj.2190
    [19] HE Q, DING L, RAHEEM A, GUO Q, GONG Y, YU G. Kinetics comparison and insight into structure-performance correlation for leached biochar gasification[J]. Chem Eng J,2021,129331.
    [20] JAYARAMAN K, KOK M V, GOKALP I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS[J]. Appl Therm Eng,2017,125:1446−1455. doi: 10.1016/j.applthermaleng.2017.07.128
    [21] ZHAO M, RAHEEM A, MEMON Z M, VUPPALADADIYAM A K, JI G. Iso-conversional kinetics of low-lipid micro-algae gasification by air[J]. J Clean Prod,2019,207:618−629. doi: 10.1016/j.jclepro.2018.10.040
    [22] ZHANG K, LI Y, WANG Z, LI Q, WHIDDON R, HE Y, CEN K. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel,2016,185:701−708. doi: 10.1016/j.fuel.2016.08.038
    [23] 路陈, 周志杰, 鑫刘, 帅袁, 王辅臣. 煤快速热解焦的微观结构对其气化活性的影响[J]. 燃料化学学报,2012,40(6):648−654. doi: 10.3969/j.issn.0253-2409.2012.06.002
    [24] HE Y, CHANG C, LI P, HAN X, LI H, FANG S, CHEN J, MA X. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis[J]. Bioresource Technol,2018,259:294−303. doi: 10.1016/j.biortech.2018.03.043
    [25] 李位位, 黄戒介, 王志青, 段会文, 李俊国, 房倚天. 煤焦CO2气化反应动力学及内扩散对气化过程的影响分析[J]. 燃料化学学报,2016,44(12):1416−1421. doi: 10.3969/j.issn.0253-2409.2016.12.002
    [26] MIURA K, SILVESTON P L. Analysis of gas-solid reactions by use of a temperature-programmed reaction technique[J]. Energ Fuel,1989,3(2):243−249. doi: 10.1021/ef00014a020
    [27] IWASZENKO S, HOWANIEC N, SMOLIŃSKI A. Determination of random pore model parameters for underground coal gasification simulation[J]. Energy,2019,166:972−978. doi: 10.1016/j.energy.2018.10.156
    [28] GAO X, ZHANG Y, LI B, ZHAO Y, JIANG B. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model[J]. Bioresource Technol,2016,218:1073−1081. doi: 10.1016/j.biortech.2016.07.057
    [29] KIM R-G, HWANG C-W, JEON C-H. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure[J]. Appl Energ,2014,129:299−307. doi: 10.1016/j.apenergy.2014.05.011
    [30] OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. The CO2 gasification kinetics of olive residue[J]. Biomass Bioenerg,2003,24(2):151−161. doi: 10.1016/S0961-9534(02)00091-0
    [31] JIANG L, ZHANG D, LI M, HE J-J, GAO Z-H, ZHOU Y, SUN J-H. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS[J]. Fuel,2018,222:11−20. doi: 10.1016/j.fuel.2018.02.143
    [32] HE Q, GONG Y, DING L, GUO Q, YOSHIKAWA K, YU G. Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification[J]. Energy,2021,229:120724. doi: 10.1016/j.energy.2021.120724
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-17
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回