留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rh/N–GMCs纳米催化剂的制备及其催化氨硼烷水解产氢性能研究

李贵 梁雨 郑君宁 许立信 叶明富 万超

李贵, 梁雨, 郑君宁, 许立信, 叶明富, 万超. Rh/N–GMCs纳米催化剂的制备及其催化氨硼烷水解产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022069
引用本文: 李贵, 梁雨, 郑君宁, 许立信, 叶明富, 万超. Rh/N–GMCs纳米催化剂的制备及其催化氨硼烷水解产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022069
LI Gui, LIANG Yu, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of Rh/N-GMCs nanocatalyst and its catalytic performance for the Hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022069
Citation: LI Gui, LIANG Yu, ZHENG Jun-ning, XU Li-xin, YE Ming-fu, WAN Chao. Preparation of Rh/N-GMCs nanocatalyst and its catalytic performance for the Hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022069

Rh/N–GMCs纳米催化剂的制备及其催化氨硼烷水解产氢性能研究

doi: 10.19906/j.cnki.JFCT.2022069
基金项目: 国家自然科学基金青年基金项目(22108238)、安徽省自然科学基金青年基金项目(1908085QB68)、安徽省科技重大专项(201903a05020055)、中国博士后面上项目(2019M662060)和特别资助站中项目(2020T130580)、安徽省光电磁性功能材料重点实验室开放研究基金(ZD2021007)、江西省生态化工工程研究中心开放研究基金(STKF2109).
详细信息
    通讯作者:

    Corresponding auther. E-mail: wanchao@zju.edu.cn

  • 中图分类号: O643.36

Preparation of Rh/N-GMCs nanocatalyst and its catalytic performance for the Hydrolytic dehydrogenation of ammonia borane

Funds: The project was supported by the National Natural Science Foundation of China (22108238), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055), China Postdoctoral Science Foundation (2019M662060, 2020T130580), Open Research Funds of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials(ZD2021007) and Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry(STKF2109).
  • 摘要: 开发高效脱氢催化剂是促进固体化学储氢材料氨硼烷(NH3BH3,AB)在氢能领域应用的关键。本文通过高温焙烧三聚氰胺和葡萄糖混合物制备出具有独特层状结构的氮掺杂石墨相碳材料(N-GMCs)。再以N-GMCs为载体采用浸渍–还原法将金属Rh负载到载体表面,最终制得Rh/N-GMCs催化剂。结果表明,Rh与N-GMCs之间存在强的金属--载体相互作用,Rh的负载量为0.4 wt%时,反应转化频率(TOF)值达到峰值,此时0.4wt%Rh/N-GMCs催化剂的TOF为645.3 min–1,该催化剂上氨硼烷水解的活化能(Ea)为54.0 kJ/mol,氨硼烷脱氢速率随氨硼烷浓度和催化剂浓度呈现正相关,该催化剂循环10次之后,催化活性未明显下降,表明该催化剂具有较好的循环稳定性。
  • 图  1  Rh/N-GMCs合成示意图

    Figure  1  Schematic illustration of synthesis of Rh/N-GMCs

    图  2  0.4wt%Rh/N-GMCs催化剂的XRD衍射图

    Figure  2  X–ray diffraction patterns for 0.4wt%Rh/N-GMCs

    图  3  (a, b, c) 0.4wt%Rh/N-GMCs催化剂不同放大倍数下的TEM图像;(d) 0.4wt%Rh/N-GMCs催化剂的STEM图像;(e) C, (f) N, (g) Rh三种元素的分布图

    Figure  3  (a, b, c) TEM images of 0.4wt%Rh/N-GMCs with different magnification; (d)HADDF– STEM images and elemental mapping of elements, (e) C, (f) N and (g) Rh of 0.4wt%Rh/N-GMCs catalysts

    图  4  (a) 0.4wt%Rh/N-GMCs催化剂的XPS图谱;相对应的精细谱图 (b) Rh 3d;(c) C 1s和(d) N 1s

    Figure  4  (a) XPS spectrum of 0.4wt% Rh/N-GMCs catalyst, corresponding fine spectrum (b) Rh 3d; (c) C 1s and (d) N 1s

    图  5  (a) 0.4wt%Rh/GMCs催化剂的XPS图谱;相对应的精细谱图 (b) Rh 3d

    Figure  5  (a) XPS spectrum of 0.4wt% Rh/GMCs catalyst, corresponding fine spectrum (b) Rh 3d

    图  6  (a) 不同Rh负载量的Rh/N-GMCs催化剂在283 K催化AB水解反应中的脱氢速率曲线;(b) 脱氢速率与Rh负载量的对数值关系曲线;(c) AB的转化率随Rh负载量的变化关系;(d) 不同Rh负载量的Rh/N-GMCs催化剂在283 K条件下脱氢AB所对应的TOF值

    Figure  6  (a) Plots of hydrogen evolution rate for the hydrolysis of AB with different rhodium concentration at 283 K; (b) The logarithmic plot of hydrogen evolution rate versus Rh loading; (c) The conversion rate of AB for the dehydrogenation of AB at different rhodium concentration; (d) The turnover frequency (TOF) values for the dehydrogenation of AB at 283 K when Rh/N-GMCs with different rhodium loading

    图  7  (a) 283 K时AB脱氢速率随AB浓度变化关系曲线;(b) AB脱氢速率与AB浓度的对数值关系曲线

    Figure  7  (a) Plots of hydrogen evolution rate for the dehydrogenation of AB with different AB concentrations at 283 K; (b) The logarithmic plot of hydrogen evolution rate versus AB concentration

    图  8  (a) 283 K时,AB脱氢速率随催化剂含量的变化曲线;(b) AB脱氢速率与催化剂质量的对数值关系曲线

    Figure  8  (a) Plots of hydrogen evolution rate for the dehydrogenation of AB with different catalyst concentration at 283 K;(b) Plot of hydrogen evolution rate versus catalyst concentration, both in logarithmic scale

    图  9  0.4wt%Rh/N-GMCs催化AB水解产氢的循环稳定性能图

    Figure  9  The stability test AB hydrolysis catalyzed by 0.4wt% Rh/N-GMCs

    图  10  0.4wt%Rh/N-GMCs催化剂循环测试10次后的透射电镜图

    Figure  10  The TEM images of 0.4wt%Rh/N-GMCs after the tenth cycle tests

    图  11  0.4wt%Rh/N-GMCs催化剂循环测试10次后的XPS谱图;相对应的精细谱图 (b) Rh 3d;(c) C 1s和(d) N 1s

    Figure  11  XPS spectra of 0.4wt%Rh/N-GMCs after the tenth cycle tests, corresponding fine spectrum (b) Rh 3d; (c) C 1s and (d) N 1s

    图  12  (a) 不同温度下0.4wt%Rh/N-GMCs催化AB脱氢速率曲线;(b) 阿伦尼乌斯方程:lnk与1000/T关系曲线

    Figure  12  (a) AB dehydrogenation rate curves of 0.4wt%Rh/N-GMCs at different temperatures; (b) Arrhenius plot: lnk versus 1000/T

    表  1  室温下水溶液中AB水解制氢各种贵金属催化剂的催化活性

    Table  1  Catalytic activities of various noble metal catalysts for AB hydrolysis in aqueous solution at room temperature

    CatalystTOF/(min–1)Ea/(kJ·mol–1)Ref.
    Rh/N-GMCs645.354This work
    Rh/Ni@CN35133.530
    Rh@TiO233428.331
    Rh0/AC18839.932
    Rh/C–SC33637.133
    Rh0/Co3O4180061.734
    Rh@S-1-H69975.535
    Rh0/nanoZrO21984836
    Pt@PC-POP104.356.437
    Rh@UiO-66219.838.438
    下载: 导出CSV
  • [1] ASCHLAPBACH L, ZUTTEL A. Hydrogen–storage materials for mobile applications[J]. Nature,2001,414(6861):353−358. doi: 10.1038/35104634
    [2] ZHAO Y Z, MENG B, CHEN L X, WANG G, ZHENG J Y, GU C H, ZHANG X, ZHANG J F. Utilization status of hydrogen energy[J]. Chem Ind Eng Prog,2015,34(9):3248−3255.
    [3] IMAMURA H, MASANARI K, KUSUHARA M, KATSUMOTO H, SUMI T, SAKATA Y. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball–milling[J]. J Alloy Compd, 2005, 386(1–2): 211–216.
    [4] SRINIVASAN S, ESCOBAR D, GOSWAMI Y, STEFANAKOS E. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH)[J]. Int J Hydrogen Energy,2008,33(9):2268−2272. doi: 10.1016/j.ijhydene.2008.02.062
    [5] AU M, JURGENSEN A R, SPENCER W A,. ANTON D L, PINKERTON F E, HWANG S J, KIM C, BOWMAN R C. Stability and reversibility of lithium borohydrides doped by metal halides and hydrides[J]. J Phys Chem C,2008,112(47):18661−18671. doi: 10.1021/jp8024304
    [6] BOWMAN R C, BRENT F. Metallic Hydrides I: Hydrogen storage and other gas–phase applications[J]. MRS Bull,2002,27(9):6.
    [7] WAN C, ZHU M Y, DU L, XU L X, YE M F, AN Y. Highly efficient aerobic oxidation of tetralin to α–tetralone over MnOx–CoOy/γ–Al2O3 catalysts[J]. Catal Commun,2019,125:87−92. doi: 10.1016/j.catcom.2019.04.003
    [8] HU M G, GEANANGEL R A, WENDLANDT W W. The thermal decomposition of ammonia borane[J]. Thermochim Acta,1978,23(2):249−255. doi: 10.1016/0040-6031(78)85066-7
    [9] WANG P, KANG X D. Hydrogen–rich boron–containing materials for hydrogen storage[J]. Dalton Trans,2008,40(40):5400−5413.
    [10] 陈健民. 镍基金属纳米复合材料的合成及其催化水合肼分解产氢[D]. 南昌: 江西师范大学, 2017.

    Chen Jian-ming. Synthesis of Ni-based metal nanocomposites for hydrogen production from hydrous hydrazine[D]. Nanchang: Jiangxi Normal University, 2017.
    [11] XU Q, CHANDRA M. Catalytic activities of non–noble metals for hydrogen generation from aqueous ammonia–borane at room temperature[J]. J Power Sources,2006,163(1):364−370. doi: 10.1016/j.jpowsour.2006.09.043
    [12] ÖZHAVA D, ÖZKAR S. Nanoalumina–supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane[J]. Mol Catal,2017,439:50−69. doi: 10.1016/j.mcat.2017.06.016
    [13] ÖZHAVA D, ÖZKAR S. Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane[J]. Appl Catal B:Environ,2016,181:716−726. doi: 10.1016/j.apcatb.2015.08.038
    [14] YAN J M, ZHANG X B, SHIOYAMA H, XU Q. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles[J]. J Power Sources,2010,195(4):1091−1094. doi: 10.1016/j.jpowsour.2009.08.067
    [15] YAN J M, ZHANG X B, HAN S, SHIOYAMA H, XU Q. Iron–nanoparticle–catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. J Power Sources,2010,39(23):2287−2289.
    [16] 邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co–CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai–hua, XU Xiao–mei, ZHOU Lang, LIN Lu–he, KANG Zhi–bing. Preparation of graphene–supported Co–CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [17] STAUBITZ A, ROBERTSON A P, MANNERS I. Ammonia–borane and related compounds as dihydrogen sources[J]. Chem Rev,2010,110(7):4079−4124. doi: 10.1021/cr100088b
    [18] MARDER T B. Will we soon be fueling our automobiles with ammonia–borane[J]. Angew Chem Int Ed,2007,46(43):8116−8118. doi: 10.1002/anie.200703150
    [19] 姜伟丽, 何利梅, 黄斌, 陈雅琪, 周广林, 周红军. Rh–BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应[J]. 燃料化学学报,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3

    JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-in, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. J Fuel Chem Technol,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3
    [20] 石张平, 祁晓岚, 李旭光, 李华英, 李经球, 孔德金, 俞俊. La2O3助剂对Rh/SiO2催化CO加氢反应性能的影响[J]. 燃料化学学报,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012

    SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. J Fuel Chem Technol,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012
    [21] WAN C, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Novel NiPt alloy nanoparticle decorated 2D layered g–C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [22] WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible–light–driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott–Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [23] LIU M M, ZHOU L, WAN C, YE M F, XU L X. Achieving Complete Hydrogen Evolution from N2H4BH3 over Mesoporous TiO2 Immobilized NiPt Alloy Nanoparticles[J]. ChemistrySelect,2021,6:9185−9190. doi: 10.1002/slct.202102592
    [24] YAO Q L, LU Z H, JIA Y S, CHEN X S, LIU X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis[J]. Int J Hydrogen Energy,2014,40(5):2207−2215.
    [25] SHEN J, YANG L, HU K, LUO W, CHENG G Z. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy,2015,40(2):1062−1070. doi: 10.1016/j.ijhydene.2014.11.031
    [26] CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia–borane using noble metal nano–clusters as highly active catalysts[J]. J Power Sources,2007,168(1):135−142. doi: 10.1016/j.jpowsour.2007.03.015
    [27] LU R, HU M, XU C, WANG Y, ZHANG Y, XU B, GAO D J, BI J, FAN G Y. Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g–C3N4 under mild conditions[J]. Int J Hydrogen Energy,2018,43(14):7038−7045. doi: 10.1016/j.ijhydene.2018.02.148
    [28] ALSAWAT M, ALTALHI T, SANTOS A, LOSIC D. Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst–free chemical vapour deposition[J]. Carbon,2016,106:295−305. doi: 10.1016/j.carbon.2016.05.043
    [29] SOARES O S G P, ROCHA R P, GONCALVES A G, FIGUEIREDO J L, ÓRFÃO J J M, PEREIRA M F R. Highly active N–doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes[J]. Appl Catal B Environ,2016,192:296−303. doi: 10.1016/j.apcatb.2016.03.069
    [30] SUN T, LU R, LONG Y, LI Q G, WU J, FAN G Y. Bamboo fungus–derived magnetic porous carbon encapsulated nickel stabilized Rh nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2021,46(69):34229−34238. doi: 10.1016/j.ijhydene.2021.07.222
    [31] XU H, YU W L, ZHANG J K, ZHOU Z, ZHANG H X, GE H B, WANG G J, QIN Y. Rhodium nanoparticles confined in titania nanotubes for efficient hydrogen evolution from ammonia borane[J]. J Colloid Interface Sci,2022,609:755−763. doi: 10.1016/j.jcis.2021.11.078
    [32] AKBAYRAK S, ÖZÇIFÇI Z, TABAKA A. Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane[J], J Colloid Interface Sci, 2019, 546: 324–332.
    [33] CHEN J Q, HU M, MING M, XU C L, WANG Y, ZHANG Y, WU J T, GAO D J, SI J, FAN G Y. Carbon–supported small Rh nanoparticles prepared with sodium citrate: Toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis[J]. Int J Hydrogen Energy,2018,43(5):2718−2725. doi: 10.1016/j.ijhydene.2017.12.079
    [34] AKBAYRAK S, TONBUL Y, ÖZKAR S. Magnetically separable Rh0/Co3O4 nanocatalyst provides over a million turnovers in hydrogen release from ammonia borane[J]. ACS Sustain Chem Eng,2020,8(10):4216−4224. doi: 10.1021/acssuschemeng.9b07402
    [35] SUN Q M, WANG N, ZHANG T J, BAI R S, MAYORAL A, ZHANG P, ZHANG Q H, TERASAKI O, YU J H. Zeolite–encaged single–atom rhodium catalysts: Highly–efficient hydrogen generation and shape–selective tandem hydrogenation of nitroarenes[J]. Angew Chem Int Ed,2019,58:18570. doi: 10.1002/anie.201912367
    [36] TONBUL Y, AKBAYRAK S, OZKAR S. Group 4 oxides supported Rhodium(0) catalysts in hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2019,44(27):14164−14174. doi: 10.1016/j.ijhydene.2018.11.162
    [37] ZHAO H, YU G, YUAN M, YANG J, XU D, DONG Z P. Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl–containing porous organic polymer for catalytic applications[J]. Nanoscale,2018,10(45):21466. doi: 10.1039/C8NR05756G
    [38] ZHANG H, HUANG M L, WEN J, LI Y P, LI A, ZHANG L H, ALI A M, LI Y D. Sub–3 nm Rh nanoclusters confined within a metal–organic framework for enhanced hydrogen generation[J]. Chem Commun,2019,55(32):4699. doi: 10.1039/C9CC00003H
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 录用日期:  2022-08-07
  • 修回日期:  2022-08-01
  • 网络出版日期:  2022-08-17

目录

    /

    返回文章
    返回