留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce0.8Cu0.2O2氧载体耦合S-1分子筛对化学链反应性能的影响

侯凯源 王禹皓 蒋丽红 范浩熙 郑燕娥

侯凯源, 王禹皓, 蒋丽红, 范浩熙, 郑燕娥. Ce0.8Cu0.2O2氧载体耦合S-1分子筛对化学链反应性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022079
引用本文: 侯凯源, 王禹皓, 蒋丽红, 范浩熙, 郑燕娥. Ce0.8Cu0.2O2氧载体耦合S-1分子筛对化学链反应性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022079
HOU Kai-yuan, WANG Yu-hao, JIANG Li-hong, FAN Hao-xi, ZHENG Yan-e. Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022079
Citation: HOU Kai-yuan, WANG Yu-hao, JIANG Li-hong, FAN Hao-xi, ZHENG Yan-e. Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022079

Ce0.8Cu0.2O2氧载体耦合S-1分子筛对化学链反应性能的影响

doi: 10.19906/j.cnki.JFCT.2022079
基金项目: 国家自然科学基金(21706108)和云南省应用基础研究项目(2018FD032)资助
详细信息
    作者简介:

    侯凯源(1999—),男,硕士研究生,1136729494@qq.com

    通讯作者:

    wangyuhao@xmu.edu.cn

    zhengyane87@yeah.net

  • 中图分类号: TQ519

Effects of Ce0.8Cu0.2O2 oxygen carrier-coupled S-1 molecular sieve on chemical-looping performance

Funds: National Natural Science Foundation of China (21706108), Applied Basic Research Plan in Yunnan Province of China Project(2018FD032)
  • 摘要: 在Ce0.8Cu0.2O2氧载体中添加不同质量S-1分子筛,并利用XRD、BET、XPS、SEM、TEM和CH4-TPR&CO2-TPO等表征对氧载体的物化特性和反应性能进行了研究。考察了S-1分子筛添加量对Ce0.8Cu0.2O2氧载体在化学链甲烷重整耦合CO2还原反应中的性能的影响。与单纯的Ce0.8Cu0.2O2氧载体相比,添加了0.3 g S-1分子筛后复合氧载体的比表面积得到了大幅度提升,从15.44 m2/g提高至73.27 m2/g。同时热稳定性和结构稳定性也得到了很大的改善。添加了0.3 g S-1分子筛的复合氧载体CH4转化率由38.93%提升至56.03%,CO2还原过程中CO产率由1.18 mmol/g增加至2.16 mmol/g。
  • 图  1  实验系统示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  氧载体的XRD谱图和新鲜氧载体的氮气吸附-脱附等温曲线

    Figure  2  XRD patterns of oxygen carriers and nitrogen adsorption-desorption isotherms of oxygen carriers

    图  3  Ce0.8Cu0.2O2(a)、Ce0.8Cu0.2O2/0.2 g S-1(b)、Ce0.8Cu0.2O2/0.3 g S-1(c)新鲜氧载体和S-1的XPS谱图

    Figure  3  XPS spectra of Ce0.8Cu0.2O2(a), Ce0.8Cu0.2O2/0.2 g S-1(b), Ce0.8Cu0.2O2/0.3g S-1(c) fresh oxygen carriers and S-1

    图  4  S-1分子筛(a1,a2)以及Ce0.8Cu0.2O2/0.3 g S-1氧载体(b1,b2)的SEM图像

    Figure  4  SEM images of S-1 (a1, a2) and Ce0.8Cu0.2O2/0.3 g S-1 (b1, b2) oxygen carrier

    图  5  Ce0.8Cu0.2O2/0.3 g S-1氧载体的TEM图像

    Figure  5  TEM images of Ce0.8Cu0.2O2/0.3 g S-1 oxygen carrier

    图  6  Ce0.8Cu0.2O2 (a)、Ce0.8Cu0.2O2/0.1 g S-1 (b)、Ce0.8Cu0.2O2/0.2 g S-1 (c)、Ce0.8Cu0.2O2/0.3 g S-1 (d)和Ce0.8Cu0.2O2/0.4 g S-1 (e)氧载体和S-1(f)的CH4-TPR谱图

    Figure  6  CH4-TPR profiles of Ce0.8Cu0.2O2 (a), Ce0.8Cu0.2O2/0.1 g S-1 (b), Ce0.8Cu0.2O2/0.2 g S-1 (c), Ce0.8Cu0.2O2/0.3 g S-1 (d) and Ce0.8Cu0.2O2/0.4 g S-1 (e) oxygen carriers and S-1(f)

    图  7  Ce0.8Cu0.2O2 (a)、Ce0.8Cu0.2O2/0.1 g S-1 (b)、Ce0.8Cu0.2O2/0.2 g S-1 (c)、Ce0.8Cu0.2O2/0.3 g S-1 (d)和Ce0.8Cu0.2O2/0.4 g S-1 (e)氧载体的CO2-TPO谱图

    Figure  7  CO2-TPO curves of Ce0.8Cu0.2O2 (a), Ce0.8Cu0.2O2/0.1 g S-1 (b), Ce0.8Cu0.2O2/0.2 g S-1 (c), Ce0.8Cu0.2O2/0.3 g S-1 (d) and Ce0.8Cu0.2O2/0.4 g S-1 (e) oxygen carriers

    图  8  Ce0.8Cu0.2O2 (a)、Ce0.8Cu0.2O2/0.1 g S-1 (b)、Ce0.8Cu0.2O2/0.2 g S-1 (c)、Ce0.8Cu0.2O2/0.3 g S-1 (d)和Ce0.8Cu0.2O2/0.4 g S-1(e)氧载体和S-1(f)在850 ℃下甲烷部分氧化反应中的气体含量变化

    Figure  8  Gas content change curve of Ce0.8Cu0.2O2 (a), Ce0.8Cu0.2O2/0.1 g S-1 (b), Ce0.8Cu0.2O2/0.2 g S-1 (c), Ce0.8Cu0.2O2/0.3 g S-1 (d), Ce0.8Cu0.2O2/0.4 g S-1 (e) oxygen carriers and S-1 (f)in the CH4 partial oxidation reactions at 850 ℃

    图  9  氧载体在850 ℃下CO2还原反应中的CO和CO2含量变化曲线

    Figure  9  Variation curve of CO and CO2 contents in CO2 reduction reactions of oxygen carriers at 850 ℃ over Ce0.8Cu0.2O2(a), Ce0.8Cu0.2O2/0.1 g S-1 (b), Ce0.8Cu0.2O2/0.2 g S-1 (c), Ce0.8Cu0.2O2/0.3 g S-1 (d), Ce0.8Cu0.2O2/0.4 g S-1 (e)

    图  10  Ce0.8Cu0.2O2(a/d)、 Ce0.8Cu0.2O2/0.2 g S-1 (b/e)和Ce0.8Cu0.2O2/0.3 g S-1 (c/f)氧载体在850 ℃时20次redox循环的CH4部分氧化反应和CO2还原反应的气体含量变化

    Figure  10  Gas content of Ce0.8Cu0.2O2 (a/d), Ce0.8Cu0.2O2/0.2 g S-1 (b/e) and Ce0.8Cu0.2O2/0.3 g S-1 (c/f) oxygen carriers in CH4 partial oxidation reactions and CO2 reduction reactions during 20 redox cycles at 850 ℃

    图  11  经历20次redox循环后的Ce0.8Cu0.2O2、Ce0.8Cu0.2O2/0.2 g S-1 和Ce0.8Cu0.2O2/0.3 g S-1 氧载体的XRD谱图和氮气吸附-脱附等温曲线

    Figure  11  XRD patterns and nitrogen adsorption-desorption isotherms of Ce0.8Cu0.2O2、Ce0.8Cu0.2O2/0.2 g S-1 and Ce0.8Cu0.2O2/0.3 g S-1 oxygen carriers after 20 redox cycles

    表  1  Ce0.8Cu0.2O2 样品和耦合不同比例S-1分子筛的Ce0.8Cu0.2O2 样品的平均孔径、比表面积和孔容

    Table  1  Average pore diameter, BET surface area and total pore volume of Ce0.8Cu0.2O2 samples and Ce0.8Cu0.2O2 samples coupled with different proportions of S-1 zeolites

    Sampleaverage pore diameter/nmsurface area/(m2·g−1)total pore volume/(cm3·g−1)
    S-12.61382.070.25
    Ce0.8Cu0.2O228.3815.440.11
    Ce0.8Cu0.2O2/0.1 g S-113.7933.210.11
    Ce0.8Cu0.2O2/0.2 g S-18.1569.400.14
    Ce0.8Cu0.2O2/0.3 g S-15.1173.270.09
    Ce0.8Cu0.2O2/0.4 g S-16.6279.000.13
    下载: 导出CSV

    表  2  样品的XPS特性参数

    Table  2  XPS characteristic parameters of sample

    SampleSurface element composition
    Oads / OlattCu + / Cu2 + Ce3 + / Ce4 +
    Ce0.8Cu0.2O21.010.470.11
    Ce0.8Cu0.2O2/0.2 g S-12.580.440.13
    Ce0.8Cu0.2O2/0.3 g S-12.450.340.15
    下载: 导出CSV

    表  3  样品在850 ℃下甲烷部分氧化反应中的气体含量

    Table  3  Gas content of sample in the CH4 partial oxidation reactions at 850 ℃

    SamplePercent conversion
    of CH4/%
    Yield of CO
    /(mmol·g−1)
    Yield of CO2
    /(mmol·g−1)
    Yield of carbon deposition
    /(mmol·g−1)
    Ce0.8Cu0.2O238.931.250.190.014
    Ce0.8Cu0.2O2/0.1 g S-144.871.680.200.015
    Ce0.8Cu0.2O2/0.2 g S-151.071.830.210.033
    Ce0.8Cu0.2O2/0.3 g S-156.032.240.190.031
    Ce0.8Cu0.2O2/0.4 g S-157.302.200.180.034
    下载: 导出CSV

    表  4  样品在850 ℃下CO2还原反应中的气体含量

    Table  4  Gas content of samples in CO2 reduction reaction at 850 ℃

    SampleYield of CO
    /(mmol·g−1)
    Ce0.8Cu0.2O21.18
    Ce0.8Cu0.2O2/0.1 g S-11.53
    Ce0.8Cu0.2O2/0.2 g S-11.91
    Ce0.8Cu0.2O2/0.3 g S-12.16
    Ce0.8Cu0.2O2/0.4 g S-12.03
    下载: 导出CSV

    表  5  样品在850 ℃时20次循环过程得失氧量与积炭量变化

    Table  5  Amount of oxygen gained and lost during the 20 cycles at 850 ℃ and the amount of carbon deposition variated

    SampleCe0.8Cu0.2O2/(mmol·g−1 Ce0.8Cu0.2O2/0.2 g S-1/(mmol·g−1 Ce0.8Cu0.2O2/0.3 g S-1/(mmol·g−1
    oxygen
    loss
    oxygen
    gain
    carbon
    deposition
    oxygen
    loss
    oxygen
    gain
    carbon
    deposition
    oxygen
    loss
    oxygen
    gain
    carbon
    deposition
    22.071.200.020 2.422.200.041 2.302.080.042
    41.230.710.0511.331.270.0491.561.570.043
    60.930.740.0481.151.200.0481.001.140.046
    80.900.810.0521.000.970.0541.171.180.044
    100.970.660.0490.910.890.0511.091.120.044
    121.931.520.0161.260.820.0281.751.360.017
    140.871.080.0500.650.620.0431.101.040.035
    161.020.950.0480.570.540.0430.981.040.035
    180.990.950.0490.590.480.0440.930.950.038
    200.870.880.0490.480.390.0440.880.860.037
    下载: 导出CSV

    表  6  20次redox循环后样品的平均孔径、比表面积和孔容

    Table  6  Average pore diameter, BET surface area and total pore volume of samples after 20 redox cycles

    SampleAverage pore diameter
    /nm
    Surface area
    /(m2·g−1)
    Total pore volume
    /(cm3·g−1)
    Ce0.8Cu0.2O210.483.010.008
    Ce0.8Cu0.2O2/0.2 g S-14.0233.940.03
    Ce0.8Cu0.2O2/0.3 g S-13.5251.500.04
    下载: 导出CSV
  • [1] KHALILPOUR R, KARIMI I A. Evaluation of utilization alternatives for stranded natural gas[J]. Energy,2012,40(1):317−328. doi: 10.1016/j.energy.2012.01.068
    [2] Li D, NAKAGAWA Y, TOMISHIGE K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Appl Catal A-Gen,2011,408(1-2):1−24. doi: 10.1016/j.apcata.2011.09.018
    [3] FAROOQI A S, YUSUF M, MOHD ZABIDI N A. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. Int J Hydrog Energy,2021,46(60):31024−31040. doi: 10.1016/j.ijhydene.2021.01.049
    [4] ANTZARAS A N, HERACLEOUS E, LEMONIDOU A A. Sorption enhanced–chemical looping steam methane reforming: Optimizing the thermal coupling of regeneration in a fixed bed reactor[J]. Fuel Process Technol,2020,208.
    [5] CHENG Z, QIN L, Fan J A. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering,2018,4(3):343−351. doi: 10.1016/j.eng.2018.05.002
    [6] CHUAYBOON S, ABANADES S, RODAT S. Solar chemical looping reforming of methane combined with isothermal H2O/CO2 splitting using ceria oxygen carrier for syngas production[J]. J Energy Chem,2020,41:60−72. doi: 10.1016/j.jechem.2019.05.004
    [7] GOLDWASSER M R, RIVAS M E, LUGO M L. Combined methane reforming in presence of CO2 and O2 over LaFe1−xCoxO3 mixed-oxide perovskites as catalysts precursors[J]. Catal Today,2005,107-108:106−113. doi: 10.1016/j.cattod.2005.07.073
    [8] LIANG T-Y, LIN C-Y, CHOU F-C. Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas[J]. J Phys Chem C,2018,122(22):11789−11798. doi: 10.1021/acs.jpcc.8b00665
    [9] PASHCHENKO D, MAKAROV I. Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis[J]. Energy,2021,222.
    [10] RAHBARI A, RAMDIN M, VAN DEN BROEKE L J P. Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable H2: CO Ratio[J]. Ind Eng Chem Res,2018,57(31):10663−10674. doi: 10.1021/acs.iecr.8b02443
    [11] WANG B, ZHANG H, XU W. Nature of Active Sites on Cu–CeO2 Catalysts Activated by High-Temperature Thermal Aging[J]. ACS Catalysis,2020,10(21):12385−12392. doi: 10.1021/acscatal.0c03188
    [12] ZHOU G, XIE F, DENG L. Supported mesoporous Cu/CeO2-δ catalyst for CO2 reverse water–gas shift reaction to syngas[J]. Int J Hydrog Energy,2020,45(19):11380−11393. doi: 10.1016/j.ijhydene.2020.02.058
    [13] ZHOU H, YI Q, WEI G. Reaction performance and lattice oxygen migration of MnFe2O4 oxygen carrier in methane-carbon dioxide reaction system[J]. Int J Hydrog Energy,2020,45(55):30254−30266. doi: 10.1016/j.ijhydene.2020.08.103
    [14] GAO N, CHENG M, QUAN C. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst[J]. Fuel,2020,273.
    [15] RAFIEE A, KHALILPOUR K R, MILANI D. CO2 Conversion and Utilization Pathways, Polygeneration with Polystorage for Chemical and Energy Hubs, 2019: 213-245.
    [16] ZHANG B, HUYAN Y, WANG J. Synthesis of CeO2 nanoparticles with different morphologies and their properties as peroxidase mimic[J]. J Am Ceram Soc, 2018.
    [17] SASTRE D, SERRANO D P, PIZARRO P. Chemical insights on the activity of La1-xSrxFeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting[J]. J CO2 Util,2019,31:16−26. doi: 10.1016/j.jcou.2019.02.013
    [18] WANG C, WANG Y, CHEN M. Recent advances during CH4 dry reforming for syngas production: A mini review[J]. Int J Hydrog Energy,2021,46(7):5852−5874. doi: 10.1016/j.ijhydene.2020.10.240
    [19] WEI Q, GAO X, WANG L. Rational design of nickel-based catalyst coupling with combined methane reforming to steadily produce syngas[J]. Fuel,2020,271.
    [20] ZHAO K, HE F, HUANG Z. Perovskite-type oxides LaFe1−xCox O3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Appl Energy,2016,168:193−203. doi: 10.1016/j.apenergy.2016.01.052
    [21] WEISSENBERGER T, LEONHARDT R, ZUBIRI B A. Synthesis and Characterisation of Hierarchically Structured Titanium Silicalite-1 Zeolites with Large Intracrystalline Macropores[J]. Chemistry,2019,25(63):14430−14440. doi: 10.1002/chem.201903287
    [22] YAO X, CHEN L, KONG T. Support effect of the supported ceria-based catalysts during NH3 -SCR reaction[J]. Chinese J Catal,2017,38(8):1423−1430. doi: 10.1016/S1872-2067(17)62868-7
    [23] 伊志豪, 孙杰, 李吉刚. 花球状 CuO / CeO2 材料上 HCN 的催化消除[J]. 材料导报,2021,35(8):8017−8022. doi: 10.11896/cldb.20010081

    (YI Zhi-hao, SUN Jie, LI Ji-gang. Catalytic elimination of HCN on curd-like CuO/CeO2 materials[J]. Materials Reports,2021,35(8):8017−8022. doi: 10.11896/cldb.20010081
    [24] MATEOS-PEDRERO C, SILVA H, PACHECO TANAKA D A. CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area[J]. Appl Catal B,2015,174-175:67−76. doi: 10.1016/j.apcatb.2015.02.039
    [25] YANG J, DING H, ZHU Z. Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: Influences of different plasma atmospheres[J]. Appl Surf Sci,2018,454:173−180. doi: 10.1016/j.apsusc.2018.05.135
    [26] ZHANG J, YANG J, WANG J. Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors[J]. Mol Catal,2017,443:131−138. doi: 10.1016/j.mcat.2017.09.030
    [27] XIE Y, WU J, JING G. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Appl Catal B,2018,239:665−676. doi: 10.1016/j.apcatb.2018.08.066
    [28] WNAG X, RODRIGUE Z, JOSE A. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria[J]. J Phys Chem B,2006,110(1):428−34. doi: 10.1021/jp055467g
    [29] ZHU Y Y, LIU R L, MA X X. Hexaaluminate as oxygen carrier for syngas generation via chemical looping CH4-CO2 reforming[C]. 第三届能源转化化学与技术研讨会摘要集, 2018: 86.
    [30] SUN Y, YAN N, LI J. The effect of calcination temperature on the electrochemical properties of La0.3Sr0.7Fe0.7Cr0.3O3−x (LSFC) perovskite oxide anode of solid oxide fuel cells (SOFCs)[J]. Sustainable Energy Technologies and Assessments,2014,8:92−98. doi: 10.1016/j.seta.2014.08.001
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 录用日期:  2022-10-12
  • 修回日期:  2022-10-06
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回