留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子液体催化多乙基萘基础油的合成及润滑性能研究

李媛媛 汤琼 陈晨 左志军 刘雷 董晋湘

李媛媛, 汤琼, 陈晨, 左志军, 刘雷, 董晋湘. 离子液体催化多乙基萘基础油的合成及润滑性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022087
引用本文: 李媛媛, 汤琼, 陈晨, 左志军, 刘雷, 董晋湘. 离子液体催化多乙基萘基础油的合成及润滑性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022087
LI Yuan-yuan, TANG Qiong, CHEN Chen, ZUO Zhi-jun, LIU Lei, DONG Jin-xiang. Synthesis of polyethylnaphthalenes base oil catalyzed by ionic liquid and its lubricating properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022087
Citation: LI Yuan-yuan, TANG Qiong, CHEN Chen, ZUO Zhi-jun, LIU Lei, DONG Jin-xiang. Synthesis of polyethylnaphthalenes base oil catalyzed by ionic liquid and its lubricating properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022087

离子液体催化多乙基萘基础油的合成及润滑性能研究

doi: 10.19906/j.cnki.JFCT.2022087
基金项目: 国家自然科学基金(U1910202, 21978794),山西省重点研发计划项目(202102090301005)和山西省青年基金(202103021223064)资助
详细信息
    通讯作者:

    E–mail: liulei@tyut.edu.cn

  • 中图分类号: TQ241.5

Synthesis of polyethylnaphthalenes base oil catalyzed by ionic liquid and its lubricating properties

Funds: The project was supported by National Natural Science Foundation of China(U1910202, 21978794);the Key Research and Development Project of Shanxi Province(202102090301005);Shanxi Province Science Foundation for Youths(202103021223064)
  • 摘要: 论文基于焦化萘和乙烯为原料,以有机铵盐/金属氯化物离子液体作为催化剂,通过烷基化反应合成多乙基萘润滑基础油。通过调控离子液体阴/阳离子的组分发现,AlCl3/Et3NHCl离子液体对萘与乙烯烷基化反应表现出良好的催化性能。通过对反应条件的优化(催化剂用量、反应时间和温度),合成了两种不同组成的基础油PEN–1(单/二乙基萘占92.9%)和PEN–2(多乙基萘占91.3%)。润滑性能测试结果表明,烷基侧链数目较多的PEN–2基础油表现出良好的摩擦学性能,且其抗磨损性能优于商用烷基萘基础油AN5,展现出良好的应用前景。
  • 图  1  萘与乙烯烷基化气相色谱图与产物组成

    Figure  1  Gas chromatogram and composition of naphthalene and ethylene alkylated products

    Mono–: mono–ethylnaphthalenes; Di–: di–ethylnaphthalenes; Tri–: tri–ethylnaphthalenes; Tetra–: tetra–ethylnaphthalenes; Penta–: penta–ethylnaphthalenes; Hexa–: hexa–ethylnaphthalenes

    图  2  不同离子液体的红外光谱谱图

    Figure  2  FT–IR spectra of different ionic liquids

    图  3  不同阳离子离子液体的紫外吸收光谱谱图

    Figure  3  UV absorption spectra of different cationic ionic liquids

    图  4  催化剂用量对萘与乙烯烷基化反应的影响

    Figure  4  Effect of the amount of ionic liquid on naphthalene alkylation reaction with ethylene

    Reaction conditions: 120 ℃, 12 h, 4 × 105 Pa

    图  5  反应温度对萘与乙烯烷基化反应的影响

    Figure  5  Effect of reaction temperature on the alkylation of naphthalene with ethylene

    Reaction conditions: 12 h, ratio of naphthalene/ILs: 10, 4 × 105 Pa

    图  6  反应时间对萘与乙烯烷基化反应的影响

    Figure  6  Effect of reaction time on the alkylation of naphthalene with ethylene

    Reaction conditions: 120 ℃, ratio of naphthalene/ILs: 10, 4 × 105 Pa

    图  7  水(a),PEN–1(b),PEN–2(c)和AN5(d)在钢盘上的静态接触角

    Figure  7  Contact angles of water (a), PEN–1 (b), PEN–2 (c), and AN5 (d) on steel disc Test conditions: vertebral plate diameter 25 mm, 6 μL, 25 ℃

    图  8  PEN–1、PEN–2与AN5的剪切黏度–剪切速率的变化

    Figure  8  Shear viscosity–shear rate variation of PEN–1, PEN–2 and AN5 Test conditions: vertebral plate diameter 25 mm, 1°, backlash 0.51 mm, 25 ℃

    图  9  PEN–1、PEN–2 与AN5的动态摩擦系数曲线(a)与平均摩擦系数(b)

    Figure  9  Friction coefficient curves (a) and average friction coefficient (b) for PEN–1, PEN–2 and AN5 SRV test conditions: 25 ℃, frequency 25 Hz, load 100 N, step size 1 mm, 30 min

    图  10  PEN–1、PEN–2与AN5在钢盘的磨损体积

    Figure  10  Wear volume in steel disc of PEN–1, PEN–2 and AN5

    图  11  PEN–1(a),PEN–2(b)与AN5(c)钢盘的3D白光图和磨痕轮廓图

    Figure  11  3D images and profiles of wear scar of steel disc of PEN–1 (a), PEN–2 (b) and AN5 (c)

    表  1  不同离子液体催化萘烷基化反应性能

    Table  1  Results of naphthalene alkylation catalyzed by different ionic liquids


    Ionic liquid

    Naphthalene

    conversion/%
    Selectivity/%
    mono–ethylnaphthalenedi–ethylnaphthalenepoly ethylnaphthalene
    Me3NHCl-2AlCl396.87.114.178.8
    Et2NHCl-2AlCl393.414.821.763.5
    Et3NHCl-2AlCl396.25.113.981.0
    Et3NHCl-2ZnCl2////
    Et3NHCl-2FeCl3////
    Reaction conditions: 120 ℃, 12 h, ratio of naphthalene/ILs: 10, 4 × 105 Pa Polyethylnaphthalenes: tri–, tetra–, penta– and hexa–
    下载: 导出CSV

    表  2  不同阳离子离子液体Hammett酸强度

    Table  2  Hammett acid strength of different cationic ionic liquids

    Ionic liquid[I]/%[IH + ]/%H0
    100
    Et2NHCl-2AlCl341.4958.51–15.14
    Et3NHCl-2AlCl328.2471.76–15.41
    Me3NHCl-2AlCl320.5079.50–15.59
    下载: 导出CSV

    表  3  多乙基萘样品的组成

    Table  3  Product composition of polyethylnaphthalenes samples

    SampleProduct composition/%
    mono–ethylnaphthalenesdi–ethylnaphthalenespolyethylnaphthalenes
    PEN–150.142.87.1
    PEN–21.96.891.3
    下载: 导出CSV

    表  4  多乙基萘和AN5润滑基础油的性能

    Table  4  Physical and chemical properties of polyethylnaphthalenes and AN5 lubricating base oils

    PropertiePEN–1PEN–2AN5
    KV40/(mm2·s–1)3.1442.4828.12
    KV100/(mm2·s–1)1.824.534.71
    Density/(g·cm–3)0.9880.9700.907
    Flash point/℃128157222
    Pour point/℃<–60–25–51
    Aniline point/℃–2.9*25.8*32.0
    Oxidative onset temperature/℃218.90233.98
    *: Mixed aniline point
    下载: 导出CSV
  • [1] 孙陆晶, 刘俊凯. 工业萘产业现状及前景分析[J]. 石油化工技术与经济,2015,31(6):6−8. doi: 10.3969/j.issn.1674-1099.2015.06.002

    SUN Lu-jing, LIU Jun-kai. Analysis on current status and prospect of industrial naphthalene[J]. Technol Econ Petrochemicals,2015,31(6):6−8. doi: 10.3969/j.issn.1674-1099.2015.06.002
    [2] 刘智峰, 黄卿, 张荷, 王如文, 郑来昌. 烷基萘基础油的研究与应用概述[C]//2021中国汽车工程学会年会论文集(3), 兰州: 中国石油兰州润滑油研究开发中心, 2021: 62–65.

    LIU Zhi-feng, HUANG Qing, ZHANG He, WANG Ru-wen, ZHENG Lai-chang, Overview of research and application of alkyl naphthalene base oil[C]// Proceedings of China–SAE Congress 2021(3). Lanzhou: Petrochina Lanzhou Lubricating Oil R&D Institute, 2021: 62–65.
    [3] WANG M, KUAI L, SHI L, MENG X, LIU N. Catalytic performance and industrial test of HY zeolite for alkylation of naphthalene and α-tetradecene[J]. New J Chem,2022,46(5):2290−2295. doi: 10.1039/D1NJ04876G
    [4] FAN M, AI J, HU C, DU X, LIU W. Naphthoate based lubricating oil with high oxidation stability and lubricity[J]. Tribol Int,2019,138:204−210. doi: 10.1016/j.triboint.2019.05.039
    [5] YANG T, WANG F, HUANG J, LING S D, LIU S, ZHANG A, WANG Y, XU J. Efficient continuous–flow synthesis of long–chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. React Chem Eng,2021,6(10):1950−1960. doi: 10.1039/D1RE00223F
    [6] WANG T, ZHANG L, CAI G, Wumanjiang E. Study on synthesis of alkyl naphthalene base oils and their lubricating properties[J]. Pet Process Petrochemical,2013,44(11):96−99.
    [7] 卫达. 长链 α–烯烃合成工艺进展[J]. 河南化工,2020,37(6):7−9.

    WEI Da. Progress in the synthesis of long China α–olefins[J]. Henan Chem Ind,2020,37(6):7−9.
    [8] BUCHBINDER A M, MARTINS S C , CHEN J Q . Regeneration of an acid catalyst by alkylation of aromatic compounds: US, 20150273460[P]. 2015–01–10.
    [9] SUGI Y, JOSEPH S, RAMADASS K, SATHISH C I, PREMKUMAR S, DASIREDDY V D B C, YANG J H, AlL-MUHTASEB A H, LIU Q, KUBOTA Y, VINU A. The isopropylation of naphthalene over USY zeolite with FAU topology. The selectivities of the products[J]. B Chem Soc Jpn,2021,94(2):606−615. doi: 10.1246/bcsj.20200340
    [10] 盛路阳, 展俊岭, 张旭鹏, 吴邦昊, 张钰, 张吉波. 核壳型ZSM-5@Beta分子筛的制备及催化烷基化合成2, 6–二甲基萘[J]. 燃料化学学报,2022,50(9):1202−1210.

    SHENG Lu-yang, ZHAN Jun-ling, ZHANG Xu-peng, WU Bang-hao, ZHANG Yu, ZHANG Ji-bo. Preparation of ZSM-5@Beta core–shell molecular sieve and its catalytic performance on 2, 6–dimethylnaphthalene synthesis[J]. J Fuel Chem Technol,2022,50(9):1202−1210.
    [11] LUCAS N, BORDOLOI A, AMRUTE A P, KASINATHAN P, VINU A, BOHRINGER W, FLETCHER J, HALLIGUDI S B. A comparative study on liquid phase alkylation of 2–methylnaphthalene with long chain olefins using different solid acid catalysts[J]. Appl Catal A–Gen, 2009, 352(1–2): 74–80.
    [12] IPATIEFF V N, PINES H, KOMAREWSKY V I. Phosphoric acid as the catalyst for alkylation of aromatic hydrocarbons[J]. Ind Eng Chem Res,1936,28(2):222−223. doi: 10.1021/ie50314a019
    [13] CARPMAEL, A. Process for the manufacture of condensation products of olefines: GB, 453422A[P]. 1936–11–04.
    [14] 张敏洁, 黄风林. 离子液体催化烷基化反应的研究进展[J]. 广州化工,2022,8(3):34−36.

    ZHANG Min-jie, HUANG Feng-lin. Research progress on alkylation reaction catalyzed by ionic liquids[J]. Guangzhou Chem Ind,2022,8(3):34−36.
    [15] 胡瑞生, 刘鹰, 王丽红, 李瑞. 离子液体中异丁烷/2–丁烯烷基化反应机理研究[J]. 燃料化学学报,2016,44(6):738−744.

    HU Rui-sheng, LIU Ying, WANG Li-hong, LI Rui. Reaction mechanism of isoparaffin alkylation in the presence of ionic liquid[J]. J Fuel Chem Technol,2016,44(6):738−744.
    [16] LIU Y, LIU G, WU G, HU R. The alkylation of isobutane and 2–butene in rotating packed bed reactor: Using ionic liquid and solid Acid as catalysts[J]. Ind Eng Chem Res,2020,59(33):14767−14775. doi: 10.1021/acs.iecr.0c02520
    [17] 王清俊, 孙来芝, 陈雷, 杨双霞, 谢新苹, 司洪宇, 赵保峰, 许美荣, 高明杰, 李天津, 华栋梁. 合成气经费托路线直接制芳烃进展[J]. 燃料化学学报,2022,50(12):1−15.

    WANG Qing-jun, SUN Lai-zhi, CHEN Lei, YANG Shuang-xia, XIE Xin-ping, SI Hong-yu, ZHAO Bao-feng, XU Mei-rong, GAO Ming-jie, LI Tian-jin, HUA Dong-liang. Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer–Tropsch route[J]. J Fuel Chem Technol,2022,50(12):1−15.
    [18] CUI J, TANG Q, CHEN C, XU H, LIU L, DONG J. High–viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties[J]. Lubr Sci,2022,1−10.
    [19] 崔敬泽, 汤琼, 陈晨, 刘宇婕, 徐红, 刘雷, 董晋湘. 高黏度烷基苊基础油的合成及润滑性能研究[J]. 化工学报,2022,73(8):3659−3668.

    CUI Jing-ze, TANG Qiong, CHEN Chen, LIU Yu-jie, XU Hong, LIU Lei, DONG Jin-xiang. Synthesis of alkylated acenaphthene with high viscosity and an investigation of their lubrication property[J]. CIESC J,2022,73(8):3659−3668.
    [20] LI L, ZHAO X, CHEN C, XU H, LIU L, DONG J. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect,2019,4(18):5284−5290. doi: 10.1002/slct.201900514
    [21] 宋秉懋, 周广林. “双碳”目标下我国现代煤化工产业高质量发展研究[J]. 中国煤炭,2022,48(3):56−61.

    SONG Bing-mao, ZHOU Guang-lin. Research on the high–quality development of China's modern coal chemical industry under the goal of carbon peak and carbon neutrality[J]. China Coal,2022,48(3):56−61.
    [22] CUI S H, LU B, CAI Q H, CAI X J, LI X M, XIAO X, HOU L J, HAN Y Y. Highly selective synthesis of diphenylmethane with acidic ionic liquids[J]. Ind Eng Chem Res,2006,45(5):1571−1574. doi: 10.1021/ie0510268
    [23] 李磊. 酸性离子液体催化多烷基萘的高效合成及其润滑性能研究[D]. 太原理工大学, 2019.

    LI Lei. Highly efficient synthesis of polyalkylated naphthalene catalyzed by acidic ionic liquids and their lubrication[D]. Taiyuan University of Technology, 2019.
    [24] ZHOU Y, DENG G, ZHENG Y Z, SUN H Y, ZHIWU Y U. The probes of acidic strength in ionic liquids[J]. Chinese Sci Bull,2015,60(26):2476−2481. doi: 10.1360/N972015-00404
    [25] YAO S, ZHAO X, AN H, WANG Y. Acidic ionic liquid–catalyzed synthesis of 1, 3–diphenyl urea from aniline and carbon dioxide[J]. CIESC J,2012,63(3):812−818.
    [26] LEI Y, YU L, SHEN M, LUO S, GAO Z. Condensation of 9–fluorenone and phenol using an ionic liquid and a mercapto compound synergistic catalyst[J]. New J Chem,2019,43(39):15700−15705. doi: 10.1039/C9NJ02581B
    [27] 王桂荣, 闫云, 杨秋生, 赵新强, 王延吉. 季铵盐类氯铝酸离子液体的表征及其催化苯与苯酐的酰基化反应[J]. 石油化工,2022,51(2):115−123. doi: 10.3969/j.issn.1000-8144.2022.02.001

    WANG Gui-rong, Yan Yun, Yang Qiu-sheng, Zhao Xin-qiang, Wang Yan-ji. Characterization of quaternary ammonium chloroaluminate ionic liquids and their catalytic performance for acylation reaction of benzene with phthalic anhydride[J]. Petrolchem Technol,2022,51(2):115−123. doi: 10.3969/j.issn.1000-8144.2022.02.001
    [28] XIN H, WU Q, HAN M, WANG D, JIN Y. Alkylation of benzene with 1–dodecene in ionic liquids [Rmim] + Al2Cl6X(R=butyl, octyl and dodecyl; X=chlorine, bromine and iodine)[J]. Appl Catal A–Gen,2005,292:354−361. doi: 10.1016/j.apcata.2005.06.012
    [29] LI C, QI X, TANG X. Synthesis of 2–isopropyl naphthalene catalyzed by Et3NHCl-AlCl3 ionic liquids[J]. China Pet Process Petrochemical Technol,2014,16(1):60−65.
    [30] YOO K. Ionic liquid–catalyzed alkylation of isobutane with 2–butene[J]. J Catal,2004,222(2):511−519. doi: 10.1016/j.jcat.2003.11.018
    [31] 袁海宽, 张天骏, 任杰, 楼寅山. 苯酚与叔丁醇烷基化反应的热力学研究[J]. 化工进展,2014,33(3):7. doi: 10.3969/j.issn.1000-6613.2014.03.010

    YUAN Hai-kuan, ZHANG Tian-jun, REN Jie, LOU Yin-shan. Thermodynamic study on phenol alkylation with tert–butyl alcohol (TBA)[J]. Chem Ind Eng Prog,2014,33(3):7. doi: 10.3969/j.issn.1000-6613.2014.03.010
    [32] 石家华, 孙逊, 杨春和, 高青雨, 李永舫. 离子液体研究进展[J]. 化学通报,2002,065(4):243−250. doi: 10.14159/j.cnki.0441-3776.2002.04.004

    SHI Jia-hua, SUN Xun, YANG Chun-he, GAO Qing-yu, LI Yong-fang. Progress in the studies on ionic liquids[J]. Chem,2002,065(4):243−250. doi: 10.14159/j.cnki.0441-3776.2002.04.004
    [33] WANG Y, SONG L, BIAN G, YANG S. A novel three–step tandem reaction for efficient syntheses of bulky anthracenyl esters from 2–benzylbenzoic acids[J]. Synth. Int J Methods Synth Org Chem,2017,49(8):1884−1888.
    [34] CHEN S, WU T, ZHAO C. Conversion of lipid into high–viscosity branched bio–lubricant base oil[J]. Green Chem,2020,22(21):7348−7354. doi: 10.1039/D0GC01338B
    [35] ZHMUD B. Beyond the aniline point: Critical solution point for the oil/aniline system as a measure of oil solubility[J]. Fuel,2007,86(16):2545−2550. doi: 10.1016/j.fuel.2007.02.020
    [36] LIU X, LI Q, GAO X, LU C, WANG Z. The palm oil–based microemulsion: Fabrication, characterization and rheological properties[J]. J Mol Liq,2020,302:112527. doi: 10.1016/j.molliq.2020.112527
    [37] KERNI L, RAINA A, HAQ M. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes[J]. Wear, 2019, 426–427: 819–827.
    [38] 王丽, 罗婷, 陈新春, 曹丙强. 球形微纳米颗粒的制备及其作为润滑油添加剂的抗磨减摩性能研究进展[J]. 中国粉体技术,2020,26(1):53−60.

    WANG Li, LUO Ting, CHEN Xin-chun, CAO Bing-qiang. Research progress on preparation and tribology properties of spherical micro–nano–particle lubricant additives[J]. China Powder Sci Technol,2020,26(1):53−60.
    [39] JIANG D, HU L, FENG D. Crown–type ionic liquids as lubricants for steel–on–steel system[J]. Tribol lett,2011,41(2):417−424. doi: 10.1007/s11249-010-9726-x
    [40] YU Q L, ZHANG C Y, DONG R, SHI Y J, WANG Y R, BAI Y Y, ZHANG J Y, CAI M R, ZHOU F, LIU W M. Physicochemical and tribological properties of gemini–type halogen–free dicationic ionic liquids[J]. Friction,2021,9(2):344−355. doi: 10.1007/s40544-019-0348-5
    [41] HUANG G W, FAN S K, BA Z W, CAI M R, QIAO D. Insight into the lubricating mechanism for alkylimidazolium phosphate ionic liquids with different alkyl chain length[J]. Tribol Int,2019,140:105886. doi: 10.1016/j.triboint.2019.105886
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 录用日期:  2022-11-08
  • 修回日期:  2022-11-06
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回