留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接甲烷固体氧化物燃料电池Ni-BZCYYb阳极抗积炭性能研究

吕秀清 孙海珍 安静 张保柱 何婧 陈绘丽

吕秀清, 孙海珍, 安静, 张保柱, 何婧, 陈绘丽. 直接甲烷固体氧化物燃料电池Ni-BZCYYb阳极抗积炭性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022094
引用本文: 吕秀清, 孙海珍, 安静, 张保柱, 何婧, 陈绘丽. 直接甲烷固体氧化物燃料电池Ni-BZCYYb阳极抗积炭性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022094
LÜ Xiu-qing, SUN Hai-zhen, AN Jing, ZHANG Bao-zhu, HE Jing, CHEN Hui-li. Improved coking resistance of direct methane solid oxide fuel cell with Ni-BZCYYb anode[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022094
Citation: LÜ Xiu-qing, SUN Hai-zhen, AN Jing, ZHANG Bao-zhu, HE Jing, CHEN Hui-li. Improved coking resistance of direct methane solid oxide fuel cell with Ni-BZCYYb anode[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022094

直接甲烷固体氧化物燃料电池Ni-BZCYYb阳极抗积炭性能研究

doi: 10.19906/j.cnki.JFCT.2022094
基金项目: 晋中学院博士科研启动经费和山西省高等学校教学改革创新项目(J2021638)资助
详细信息
    通讯作者:

    Tel: + 86-18636860248, E-mail: huilichen@sxu.edu.cn

  • 中图分类号: TM911.44

Improved coking resistance of direct methane solid oxide fuel cell with Ni-BZCYYb anode

Funds: The project was supported by the Ph. D. Research Funding of Jinzhong University and Teaching Reform and Innovation Program of Higher Education in Shanxi Province (J2021638).
  • 摘要: 直接以甲烷(CH4)为燃料的固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)具有操作系统简单、发电效率高、环境友好等优点,但传统镍基阳极使用CH4时极易产生积炭,导致电池性能下降甚至破裂。因此,如何有效抑制积炭的产生是目前镍基阳极面临的重要挑战。本文针对传统Ni - Y0.08Zr0.92O2−δ(Ni-YSZ)阳极使用CH4时存在严重的积炭行为,采用质子导体BaZr0.1Ce0.7Y0.1Yb0.1O3−δ(BZCYYb)代替氧离子导体YSZ,考查了Ni-BZCYYb对CH4水蒸气重整反应的催化活性和抗积炭性能,同时与Ni-YSZ进行比较。以Ni-BZCYYb为阳极的SOFC,在700–600 ℃、湿CH4(97% CH4-3% H2O)为燃料时取得了较好的电化学性能,同时,该电池在600 ℃、恒电流密度下稳定运行100 h电压没有明显降低。但以Ni-YSZ为阳极的SOFC在相同条件运行不到6 h电压降为零。通过对比表明,BZCYYb提高了阳极的抗积炭能力,Ni-BZCYYb可以应用于以CH4为燃料的SOFC中,是优异的抗积炭阳极材料。
  • 图  1  BZCYYb、BSCF和BSCF-BZCYYb (质量比1∶1) 混合粉体的XRD谱图

    Figure  1  XRD patterns of BZCYYb, BSCF, and calcined BSCF-BZCYYb (1∶1 mass ratio)

    图  2  CH4-H2O (1∶1)条件下Ni-BZCYYb和Ni-YSZ对CH4水蒸气重整反应的催化活性(a);800 ℃时的稳定性测试 (b)

    Figure  2  Catalytic activity of Ni-BZCYYb and Ni-YSZ for steam reforming of CH4 (a); Time dependence of CH4 conversion rate under CH4-H2O (1∶1) gas mixture for Ni-BZCYYb and Ni-YSZ at 800 ℃ (b)

    图  3  Ni-BZCYYb和Ni-YSZ在湿CH4气氛中处理后的TG曲线

    Figure  3  Thermogravimetric analysis of Ni-BZCYYb and Ni-YSZ powders pre-treated in wet CH4 at 650 and 700 ℃

    图  4  新鲜电池和分别在650与700 ℃、湿CH4中处理后的(a) Ni-YSZ|YSZ和(b)Ni-BZCYYb|BZCYYb半电池的照片

    Figure  4  Digital photos of the fresh and treated cells in wet CH4 at 650 and 700 ℃ for 1 h (a) Ni-YSZ|YSZ and (b) Ni-BZCYYb|BZCYYb

    图  5  Ni-BZCYYb电池在700–600 ℃的 (a) I-V-P曲线和 (b) EIS曲线

    Figure  5  (a) I-V-P curves and (b) EIS curves of Ni-BZCYYb cell in wet CH4 from 700 to 600 ℃

    图  6  (a) Ni-BZCYYb和Ni-YSZ电池在600 ℃、300 mA/cm2下的恒流放电曲线;(b) 恒流放电测试结束后两种电池形貌的照片

    Figure  6  (a) Time-dependent voltage under a constant current density of 300 mA/cm2 at 600 ℃ of Ni-BZCYYb and Ni-YSZ; (b) The digital photographs of two cells after testing in wet CH4

    图  7  Ni-YSZ电池 (a) 稳定性测试前和 (b) 稳定性测试后阳极表面的SEM照片和相应碳元素的EDS图

    Figure  7  SEM images of anode surfaces and corresponding EDS mapping of carbon elemental for Ni-YSZ cell (a) the fresh H-reduced and (b) after operation with wet CH4 under a 300 mA/cm2 current at 600 ℃

    图  8  Ni-BZCYYb电池 (a) 稳定性测试前和 (b) 稳定性测试后阳极表面的SEM照片和相应碳元素的EDS图

    Figure  8  SEM images of anode surfaces and corresponding EDS mapping of carbon elemental for Ni-BZCYYb cell (a) the fresh H-reduced and (b) after operation with wet CH4 under a 300 mA/cm2 current at 600 ℃

    表  1  分别在650和700 ℃下、湿CH4中处理后的电池与新鲜电池之间的质量差

    Table  1  Weight difference between the fresh cell and the treated cell in wet CH4 at 650 and 700 ℃

    Temperature t/℃m0 /gmt /g100(mtm0)/m0 (%)
    Ni-BZCYYbNi-YSZNi-BZCYYbNi-YSZNi-BZCYYbNi-YSZ
    6500.3440.3410.3610.3764.9410.26
    7000.3430.3450.3650.3966.4114.78
    m0: the weight of fresh cells; mt: the weight of treated cells
    下载: 导出CSV
  • [1] ZHOU S, TONG Q, PAN X Z, CAO M, WANG H L, GAO J, QU X M. Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective[J]. Energy Econ,2021,95:105137. doi: 10.1016/j.eneco.2021.105137
    [2] FAN L Y, LI C E, ARAVIND P V, CAI W W, HAN M F, BRABDON N. Methane reforming in solid oxide fuel cells: challenges and strategies[J]. J Power Sources,2022,538:231573. doi: 10.1016/j.jpowsour.2022.231573
    [3] ORMEROD R M. Solid oxide fuel cells[J]. Chem Soc Rev,2003,32:17−28. doi: 10.1039/b105764m
    [4] TURGUT M G. Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas[J]. Prog Energy Combust Sci,2016,54:1−64. doi: 10.1016/j.pecs.2015.10.004
    [5] RAMADHANI F, HUSSAIN M A, MOKHLIS H, HAJIMOLANA S. Optimization strategies for solid oxide fuel cell (SOFC) application: a literature survey[J]. Renewable Sustainable Energy Rev,2017,76:460−484. doi: 10.1016/j.rser.2017.03.052
    [6] SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. Int J Hydrogen Energy,2021,46:27643−27674. doi: 10.1016/j.ijhydene.2021.06.020
    [7] LI Q H, WANG X, LIU C Z, YANG X W, LI C, JIA L C, LI J. A direct-methane solid oxide fuel cell with a functionally engineered Ni-Fe metal support[J]. J Power Sources,2022,537:231533. doi: 10.1016/j.jpowsour.2022.231533
    [8] SENGODANA S, LAN R, HUMPHREYSA J, DU D, XU W, WANG H T, TAO S W. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable Sustainable Energy Rev,2018,82:761−780. doi: 10.1016/j.rser.2017.09.071
    [9] WEI T, LIU B, JIA L C, LI R H. Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell[J]. Int J Hydrogen Energy,2021,46:24441−24460. doi: 10.1016/j.ijhydene.2021.05.021
    [10] SAADABAD S A, THATTAI A T, FAN L Y, LINDEBOOM R E F, SPANJERS H, ARAVIND P V. Solid oxide fuel cells fuelled with biogas: Potential and constraints[J]. Renewable Energy,2019,134:194−214. doi: 10.1016/j.renene.2018.11.028
    [11] SHAO Z P, ZHANG C M, WANG W, SU C, ZHOU W, ZHU Z H, PARK H J, KWAK C. Electric power and synthesis gas co-generation from methane with zero waste gas emission[J]. Angew Chem Int Ed,2011,50:1792−1797. doi: 10.1002/anie.201006855
    [12] BOLDRIN P, ENRIQUE R, UIZ-TREJO E, MERMELSTEIN J, BARNDON N P. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, Incorporating lessons from heterogeneous catalysis[J]. Chem Rev,2016,116:13633−13684. doi: 10.1021/acs.chemrev.6b00284
    [13] ABDELKAREEM M A, TANVEER W H, SAYED E T, ASSAD M E H, ALLAGUI A CHA S W. On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells[J]. Renewable Sustainable Energy Rev,2019,101:361−375. doi: 10.1016/j.rser.2018.10.025
    [14] WANG X X, WEI K W, YAN S L, WU Y J, KANG J H, FENG P Z, WANG S R, ZHOU F B, LING Y H. Efficient and stable conversion of oxygen-bearing low-concentration coal mine methane by the electrochemical catalysis of SOFC anode: from pollutant to clean energy[J]. Appl Catal B: Environ,2020,268:118413. doi: 10.1016/j.apcatb.2019.118413
    [15] WEI T, QIU P, YANG J, JIA L C, CHI B, PU J, LI J. High-performance direct carbon dioxide-methane solid oxide fuel cell with a structure-engineered double-layer anode[J]. J Power Sources,2021,484:229199. doi: 10.1016/j.jpowsour.2020.229199
    [16] WANG W, SU C, WU Y Z, RAN R, SHAO Z P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev,2013,113:8104−8151. doi: 10.1021/cr300491e
    [17] HANNA J, LEE W Y, SHI Y, GHONIEM A F. Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels[J]. Prog Energy Combust Sci,2014,40:74−111. doi: 10.1016/j.pecs.2013.10.001
    [18] RAFIQUE M, NAWAZ H, RAFIQUE M S, TAHIR M B, NABI G, KHALID N R. Material and method selection for efficient solid oxide fuel cell anode: recent advancements and reviews[J]. Int J Hydrogen Energy,2019,43:2423−2446.
    [19] LV X Q, CHEN H L, ZHOU W, CHEN F Q, LI S D, SHAO Z P. Direct-methane solid oxide fuel cells with an in situ formed Ni-Fe alloy composite catalyst layer over Ni-YSZ anodes[J]. Renewable Energy,2020,150:334−341. doi: 10.1016/j.renene.2019.12.126
    [20] ZHU W Z, DEEVI S C. A review on the status of anode materials for solid oxide fuel cells[J]. Mater Sci Eng A,2003,362:228−239. doi: 10.1016/S0921-5093(03)00620-8
    [21] TAILLADES G, PERS P, MAO V, TAILLADES M. High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying[J]. Int J Hydrogen Energy,2016,41:12330−12336. doi: 10.1016/j.ijhydene.2016.05.094
    [22] YANG L, WANG S Z, BLINN K, LIU M F, LIU Z, CHEN Z, LIU M L. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.1Yb0.1O3−δ[J]. Science,2009,326:126−129. doi: 10.1126/science.1174811
    [23] HUA B, LI M, PU J, CHI B, LI J. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells[J]. J Mater Chem A,2014,2:12576−12582. doi: 10.1039/C4TA01989J
    [24] MA J J, JIANG C R, CONNOR P A, CASSIDY M, IRVINE T S. Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels[J]. J Mater Chem A,2015,3:19068−19076. doi: 10.1039/C5TA06421J
    [25] ARPORNWICHANOPA A, PATCHARAVORACHO Y. Investigation of a proton-conducting SOFC with internal autothermal reforming of methane[J]. Chem Eng Res Des,2013,9:1508−1516.
    [26] KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC[J]. Appl Catal B: Environ,2010,97:108−114. doi: 10.1016/j.apcatb.2010.03.029
    [27] WANG W, SU C, RAN R, ZHAO B, SHAO Z P, TADE M O, LIU S M. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells[J]. ChemSusChem,2014,7:1719−1728. doi: 10.1002/cssc.201301341
    [28] YANG L, CHOI Y M, QIN W T, CHEN H Y, BLIIN K, LIU M F, LIU P, BAI J M, TYSON T A, LIU M L. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun,2011,2:357. doi: 10.1038/ncomms1359
    [29] GUO Y M, RAN R, SHAO Z P. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0≤y≤0.8) for fuel cell applications[J]. J Power Sources,2009,193:400−407. doi: 10.1016/j.jpowsour.2009.03.044
    [30] CHANG H, CHEN H L, SHAO Z P, SHI J, BAI J P, LI S D. In situ fabrication of (Sr, La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode[J]. J Mater Chem A,2016,4:13997−14007. doi: 10.1039/C6TA04639H
    [31] QIU P, SUN S C, YANG X, CHEN F L, XIONG C Y, JIA L C, LI J. A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells[J]. Int J Hydrogen Energy,2021,46:25208−25224. doi: 10.1016/j.ijhydene.2021.05.040
    [32] 姚瑶, 蔡佩君, 王绍荣. 沼气燃料固体氧化物燃料电池阳极相关问题综述[J]. 陶瓷学报,2021,42(4):560−568. doi: 10.13957/j.cnki.tcxb.2021.04.004

    YAO Yao, CAI Pei-jun, WANG Shao-rong. Overview in anode related problems of solid oxide fuel cells fed with biogas[J]. J Ceram,2021,42(4):560−568. doi: 10.13957/j.cnki.tcxb.2021.04.004
    [33] MAMONTOV E, EGAMI T, BREZNY R, KORANNE M, TYAGI S. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia[J]. J Phys Chem B,2000,104:11110−11116. doi: 10.1021/jp0023011
    [34] ZHANG Y, XIE D, CHI B, PU J, LI J, YAN D. Basic properties of proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) material[J]. Asia-Pac J Chem Eng,2019,14:e2322. doi: 10.1002/asia.201900550
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2022-12-20
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-26

目录

    /

    返回文章
    返回