留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究

康海彦 莫杜娟 张学军 张梦茹 高洪润 毛艳丽 李海洋 宋忠贤

康海彦, 莫杜娟, 张学军, 张梦茹, 高洪润, 毛艳丽, 李海洋, 宋忠贤. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023005
引用本文: 康海彦, 莫杜娟, 张学军, 张梦茹, 高洪润, 毛艳丽, 李海洋, 宋忠贤. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2023005
KANG Hai-yan, MO Du-juan, ZHANG Xue-jun, ZHANG Meng-ru, GAO Hong-run, MAO Yan-li, LI Hai-yang, SONG Zhong-xian. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for Selective Catalytic Reduction with NH3[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023005
Citation: KANG Hai-yan, MO Du-juan, ZHANG Xue-jun, ZHANG Meng-ru, GAO Hong-run, MAO Yan-li, LI Hai-yang, SONG Zhong-xian. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for Selective Catalytic Reduction with NH3[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023005

CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究

doi: 10.19906/j.cnki.JFCT.2023005
基金项目: This work is supported by the National Natural Science Foundation of China 国家基金(No. 21872096), Natural Science Youth Fund of Henan Province 河南省青年自然科学基金(No. 202300410034); Young Teacher Foundation of Henan University of Urban Construction 河南城建学院骨干教师项目(No. YCJQNGGJS201903),Academic Leader of Henan Institute of Urban Construction河南城建学院学术带头人项目(No. YCJXSJSDTR202204), Science and technology major special of Pingdingshan平顶山市2021年重大科技专项(2021ZD03)and Doctoral Research Start-up Project of Henan University of Urban Construction 河南城建学院博士启动基金(No. 990/Q2017011)
详细信息
    通讯作者:

    E-mail: xjzhang_syict@163.com

    songzhongxian@126.com

  • 中图分类号: O643

Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for Selective Catalytic Reduction with NH3

  • 摘要: 本文利用原位合成法成功制备CeO2-WO3催化剂并用于脱硝反应,焙烧温度为550 ℃的CW-550催化剂活性最佳,200 ℃时CW-550脱硝活性达到90%以上。CW-550催化剂具有优越的催化剂性能可归结为较大的比表面积、较多的Ce3 + 物种、丰富的表面酸性和优越的氧化还原性能。Ce3 + 增多,有利于氧空位的形成,可促进氧化还原性能。WO3的引入,在550 ℃的焙烧条件下可显著提升催化剂的Brönsted酸量,有利于氨气的吸附与活化,提升其催化性能。CW催化剂上吸附的NH3物种能与气态的NO反应,而吸附态的NH3与吸附态的NOx不能进行高效反应,因此CW催化剂的SCR反应主要遵循Eley-Rideal反应机理。
  • 图  1  (a) CW催化剂的NOx转化率; (b) CW催化剂的NO2生成量; (c) CW催化剂的N2O浓度和N2选择性;(d) CW催化剂的XRD图谱

    Figure  1  (a) Catalyst CW of NOx conversion; (b) NO2 production; (c) N2O concentration and N2 selectivity; (d) XRD patterns of catalyst CW

    图  2  (a) CW催化剂N2吸附-脱附等温线; (b) 孔径分布; (c) 拉曼光谱; (d) H2-TPR

    Figure  2  (a) Catalyst CW of N2 adsorption-desorption isotherms; (b) pore size distribution; (c) Raman spectra; (d) H2-TPR

    图  3  CW催化剂在200 ℃下NH3吸附原位漫反射红外光谱:(a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    Figure  3  In-situ DRIFTS spectra of CW catalyst adsorbed NH3 at 200 ℃: (a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    图  4  CW催化剂在200 ℃下吸附NO + O2的原位漫反射红外光谱:(a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    Figure  4  In-situ DRIFTS spectea of CW catalyst adsorbed NO + O2 at 200 ℃: (a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    图  5  预吸附NH3与NO + O2反应的原位漫反射红外光谱:(e) CW-450; (f) CW-500; (g) CW-550

    Figure  5  In-situ DRIFTS spectra of reaction between NO + O2 and pre-adsorption NH3 species over (e) CW-450; (f) CW-500; (g) CW-550

    图  6  预吸附NO + O2和NH3反应的原位漫反射红外光谱:(a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    Figure  6  In-situ DRIFTS spectra of reaction between NH3 and pre-adsorption NO + O2 species over (a) CW-450; (b) CW-500; (c) CW-550; (d) CW-600

    图  7  CW催化剂SCR反应途径

    Figure  7  SCR reaction pathway of CW catalyst

    表  1  表面原子浓度(%)

    Table  1  Surface atom concentration (%)

    样品Ce3 + /(Ce4 + + Ce3 + )Oα/(Oα + Oβ)
    CW-45020.6425.76
    CW-50021.4233.3
    CW-55023.9416.81
    CW-60023.0826.85
    下载: 导出CSV
  • [1] SHAN W P, LIU F D, YU Y B, HE H, DENG C L, ZI X Y. High-efficiency reduction of NOx emission from diesel exhaust using a CeWOx catalyst[J]. Catal Commun,2015,59:226−228. doi: 10.1016/j.catcom.2014.10.032
    [2] SHEN Z, LIU X Y, IMPENG S, ZHANG C B, YAN T T, WANG P L, ZHANG D S. Alkali and heavy metal copoisoning resistant catalytic reduction of NOx via liberating lewis acid sites[J]. Environ Sci Technol,2022,56(8):5141−5149. doi: 10.1021/acs.est.1c08096
    [3] WANG P L, YAN L J, GU Y D, KUBOON S, LI H R, YAN T T, SHI L Y, ZHANG D S. Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts[J]. Environ Sci Technol,2020,54(10):6396−6405. doi: 10.1021/acs.est.0c00100
    [4] YAN L J, JI Y Y, WANG P L, FENG C, HAN L P, LI H R, YAN T T, SHI L Y, ZHANG D S. Alkali and phosphorus resistant zeolite-like catalysts for NOx reduction by NH3[J]. Environ Sci Technol,2020,54(14):9132−9141. doi: 10.1021/acs.est.0c03290
    [5] ZHANG B L, ZHANG S G, LIU B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3[J]. Appl Surf Sci,2020,529:147068. doi: 10.1016/j.apsusc.2020.147068
    [6] GENG Y, JIN K, MEI J, SU G Y, MA L, YANG S J. CeO2 grafted with different heteropoly acids for selective catalytic reduction of NOx with NH3[J]. J Hazard Mater,2020,382:121032. doi: 10.1016/j.jhazmat.2019.121032
    [7] GHOLAMI F, TOMAS M, GHOLAMI Z, MOHAMMADTAGHI, V. Technologies for the nitrogen oxides reduction from flue gas: a review[J]. Sci Total Environ,2020,714:136712. doi: 10.1016/j.scitotenv.2020.136712
    [8] HU X L, CHEN J X, QU W Y, LIU R, XU D R, MA Z, TANG X F. Sulfur-resistant ceria-based low-temperature SCR catalysts with the non-bulk electronic states of ceria[J]. Environ Sci Technol,2021,55(8):5435−5441. doi: 10.1021/acs.est.0c08736
    [9] JIANG S, LI T, ZHENG J K, ZHANG H, LI X, ZHU T L. Unveiling the remarkable arsenic resistance origin of alumina promoted cerium-tungsten catalysts for NH3-SCR[J]. Environ Sci Technol,2020,54(22):14740−14749. doi: 10.1021/acs.est.0c05152
    [10] KANG L, HAN L P, HE J V, LI H R, YAN T T, CHEN G R, ZHANG J P, SHI L Y, ZHANG D S. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environ Sci Technol,2019,53(2):938−945. doi: 10.1021/acs.est.8b05637
    [11] QI X R, HAN L P, DENG J, LAN T W, WANG F L, SHI L Y, ZHANG D S. SO2-tolerant catalytic reduction of NOx via tailoring electron transfer between surface iron sulfate and subsurface ceria[J]. Environ Sci Technol,2022,56(9):5840−5848. doi: 10.1021/acs.est.2c00944
    [12] SONG Z X, LIU P, FU Y M, LIU H P, HUANG Z Z, KANG H Y, MAO Y L, LIU B, GUO Y F. Promotional effect of acidic oxide on catalytic activity and N2 selectivity over CeO2 for selective catalytic reduction of NOx by NH3[J]. Appl Organomet Chem,2019,33(6):e4919. doi: 10.1002/aoc.4919
    [13] ZHANG Y P, WANG L F, LI J, ZHANG H Y, XU H T, XIAO R, YANG L J. Promotional roles of ZrO2 and WO3 in V2O5-WO3/TiO2-ZrO2 catalysts for NOx reduction by NH3: catalytic performance, morphology, and reaction mechanism[J]. Chinese J Catal,2016,37(11):1918−1930. doi: 10.1016/S1872-2067(16)62510-X
    [14] 李振壮, 熊志波, 何军飞, 李承绪, 屈小珂, 宁星, 吴水木, 陆威. 淀粉生物模板铈钨复合氧化物催化剂SCR脱硝性能[J]. 化学工程,2020,48(5):16−20. doi: 10.3969/j.issn.1005-9954.2020.05.004

    LI Zhen-zhuang, XIONG Zhi-bo, LI Chen-xu, QU Xiao-ke, NING Xing, WU Shui-Mu, LU Wei. Selective catalytic reduction of NOx of starch bio-template cerium-tungsten mixed oxide catalyst[J]. Chem Eng,2020,48(5):16−20. doi: 10.3969/j.issn.1005-9954.2020.05.004
    [15] 李丽, 薛茹君, 陈春阳, 王庆超, 周敏, 陈淑芬. WO3(MoO3)-V2O5/CeO2-TiO2/HM的制备及其脱硝性能[J]. 合肥工业大学学报(自然科学版),2014,37(4):398−401.

    LI Li, XUE Ru-jun, CHEN Chun-yang, WANG Qing-chao, ZHOU Min, CHEN Shu-fen. Preparation of WO3(MoO3)-V2O5/CeO2-TiO2/HM and its denitration performance[J]. J Hefei Univ Technol,2014,37(4):398−401.
    [16] 马赫遥. 基于形貌调控的WO3/CeO2催化剂及其NH3-SCR脱硝机制[D]. 杭州: 浙江大学, 2020.

    MA He-yao, WO3/CeO2 catalyst and its NH3-SCR denitration mechanism based on morphology control[D]. Hangzhou: Zhejiang University, 2020.
    [17] CHEN L, LI J H, ABLIKIM W, WANG J, CHANG H Z, MA L, XU J Y, GE M F, ARANDIYAN H. CeO2-WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range[J]. Catal Lett,2011,141(12):1859−1864. doi: 10.1007/s10562-011-0701-4
    [18] WANG H, QU Z P, DONG S C, XIE H B, TANG C. Superior performance of Fe1-xWxOδ for the selective catalytic reduction of NOx with NH3: interaction between Fe and W[J]. Environ Sci Technol,2016,50(24):13511−13519. doi: 10.1021/acs.est.6b03589
    [19] LI J Y, SONG Z X, NING P, ZHANG Q L, LIU X, LI H, HUANG Z Z. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst[J]. J Rare Earth,2015,33(7):726−735. doi: 10.1016/S1002-0721(14)60477-4
    [20] 王栋, 张信莉, 彭建升, 路春美, 韩奎华, 徐丽婷. 煅烧温度对γ-Fe2O3催化剂结构及其脱硝活性的影响[J]. 环境科学研究,2015,28(5):808−815.

    WANG Dong, ZHANG Xin-li, PENG Jian-sheng, HAN Kui-hua, XU Li-ting. Effect of calcination temperature on selective catalytic reduction of NOx over γ-Fe2O3 catalyst prepared with microwave assistance[J]. Res Environ Sci,2015,28(5):808−815.
    [21] 陈邱谆, 丁凯, 路春美, 巩志强, 吕泽康. 煅烧温度对铈改性赤泥催化剂脱硝性能的影响[J]. 广州化工,2020,48(21):46−49. doi: 10.3969/j.issn.1001-9677.2020.21.019

    CHEN Qiu-zhun, DING Kai, LU Chun-mei, GONG Zhi-qiang, LU Ze-kang. Effect of calcination temperature on selective catalytic reduction of cerium-modified red mud catalyst[J]. Guangzhou Chem Ind,2020,48(21):46−49. doi: 10.3969/j.issn.1001-9677.2020.21.019
    [22] 张信莉, 王栋, 彭建升, 路春美, 徐丽婷. 煅烧温度对Mn改性γ-Fe2O3催化剂结构及低温SCR脱硝活性的影响[J]. 燃料化学学报,2015,43(2):243−250. doi: 10.3969/j.issn.0253-2409.2015.02.016

    ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Influence of calcination temperature on structural of Mn-doped γ-Fe2O3 catalysts and Low temperature SCR activity[J]. J Fuel Chem Technol,2015,43(2):243−250. doi: 10.3969/j.issn.0253-2409.2015.02.016
    [23] MA S Y, GAO W Q, YANG Z D, LIN R Y, WANG X W, ZHU X B, JIANG Y. Superior Ce-Nb-Ti oxide catalysts for selective catalytic reduction of NO with NH3[J]. J Energy Inst,2021,94:73−84. doi: 10.1016/j.joei.2020.11.001
    [24] 李露露. 铈基NH3-SCR催化剂的制备及其脱硝性能研究[D]. 南京: 南京大学, 2017.

    LI Lu-lu. The research of preparation and performance of ceria-based catalyst in the NH3-selective catalytic reduction [D]. Nanjing: Nanjing University, 2017.
    [25] ZHAN S H, ZHANG H, ZHANG Y, SHI Q, LI Y, LI X J. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(chi)-CeO2 at low temperatures[J]. Appl Catal B-Environ,2017,203:199−209. doi: 10.1016/j.apcatb.2016.10.010
    [26] 田俊奇. Mn基催化剂的制备及其在低温脱硝中的应用[D]. 2020, 石河子大学.

    TIAN Jun-qi. Preparation of Mn-based catalyst and its application in Low temperature denitration[D]. Shihezi: Shihezi University, 2020.
    [27] 罗贵莹. Ce-W脱硝催化剂的研究[D]. 北京: 北京化工大学, 2020.

    LUO Gui-ying. Study on Ce-W Catalyst for the NH3-SCR of NOx[D]. Beijing: Beijing University of Chemical Technology, 2020.
    [28] XIAO X X, WANG J J, JIA X F, MA C, QIAO W M, LING L C. Low-temperature selective catalytic reduction of NOx with NH3 over Mn-Ce composites synthesized by polymer-assisted deposition[J]. ACS Omega,2021,6(19):12801−12812. doi: 10.1021/acsomega.1c01123
    [29] CHOUDHURY B. CHOUDHURY A. Ce3 + and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles[J]. Mater Chem Phys,2012,131(3):666−671. doi: 10.1016/j.matchemphys.2011.10.032
    [30] ZHENG L R, LIU C, TAN Y S, WANG L H, XIAN H. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane[J]. Appl Catal B-Environ,2015,176:542−552.
    [31] LI X, LI X S, LI J H, HAO J M. High calcium resistance of CeO2-WO3 SCR catalysts: structure investigation and deactivation analysis[J]. Chem Eng J,2017,317:70−79. doi: 10.1016/j.cej.2017.02.027
    [32] MA Z R, WENG D, WU X D, SI Z C. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia[J]. J Environ Sci,2012,24(7):1305−1316. doi: 10.1016/S1001-0742(11)60925-X
    [33] LI X L, WANG Z, SUN J, OH R, FENG J J, SHI D D, ZHAO W, LIU S S. Influence of CeO2 morphology on WO3/CeO2 catalyzed NO selective catalytic reduction by NH3[J]. J Energy Inst,2020,93(4):1511−1518. doi: 10.1016/j.joei.2020.01.013
    [34] PENG Y, LI K Z, LI J H. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study[J]. Appl Catal B-Environ, 2013, 140-141, 483-492.
    [35] 王丹. 铈基复合氧化物催化剂的优化及脱硝性能研究[D]. 大连: 大连理工大学, 2018.

    WANG Dan. Study on optimization of cerium based mixed oxide catalysts and their denitrification performance[D]. Dalian: Dalian University of Technology, 2018.
    [36] 王俊凯. 无机非金属酸(SO42−/PO43−)改性铈基催化剂脱硝性能研究[D]. 沈阳: 沈阳化工大学, 2019.

    WANG Jun-kai. Inorganic nonmetallic acid (SO42−/PO43−) modified of CeO2 catalyst for denitration performance[D]. Shenyang: Shenyang University of Chemical Technology, 2019.
    [37] 王雪冲. 碱(土)金属对Ce基催化剂SCR烟气脱硝性能的影响研究[D]. 上海: 中国石油大学(东华), 2017.

    WANG Xue-chong. The effect of alkali and alkaline earth metal on Ce based catalysts selective catalytic reduction of NO[D]. Shanghai: China University of Petroleum (Donghua), 2017.
    [38] ZHANG L. SUN J F, XIONG Y, ZENG X Q, TANG C J, DONG L. Catalytic performance of highly dispersed WO3 loaded on CeO2 in the selective catalytic reduction of NO by NH3[J]. Chinese J Catal,2017,38(10):1749−1758. doi: 10.1016/S1872-2067(17)62887-0
    [39] WANG D, PENG Y, YANG Q L, HUA F Y, LI J H, CRITTENDEN J. NH3-SCR performance of WO3 blanketed CeO2 with different morphology: balance of surface reducibility and acidity[J]. Catal Today,2019,332:42−48. doi: 10.1016/j.cattod.2018.07.048
    [40] 訾朝辉. Mn改性泡沫镍负载铁基催化剂低温SCR脱硝性能研究[D]. 马鞍山: 安徽工业大学, 2019.

    ZI Zhao-hui. Low-temperature SCR deNOx performance of Mn modified foamed nickel supported iron-based catasts[D]. Maanshan: Anhui University of Technology, 2019.
    [41] LI X, LI X S, ZHU T L, PENG Y, LI J H, HAO J M. Extraordinary deactivation offset effect of arsenic and calcium on CeO2-WO3 SCR catalysts[J]. Environ Sci Technol,2018,52(15):8578−8587. doi: 10.1021/acs.est.8b00746
    [42] PENG Y. QU R Y, ZHANG X Y, LI J H. The relationship between structure and activity of MoO3-CeO2 catalysts for NO removal: influences of acidity and reducibility[J]. Chem Commun,2013,49(55):6215−7. doi: 10.1039/c3cc42693a
    [43] HE G Z. GAO M, PENG Y, YU Y B, SHAN W P, HE H. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts[J]. Environ Sci Technol,2021,55(10):6995−7003. doi: 10.1021/acs.est.0c08214
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-21
  • 录用日期:  2022-10-21
  • 修回日期:  2022-10-09
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回