Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
XUE Yan-feng, NIU Yu-lan, ZHENG Hong-yan, CUI Xiao-jing, MA Qing-guo, TANG Jian-ke, DING Li-feng. Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6
Citation: XUE Yan-feng, NIU Yu-lan, ZHENG Hong-yan, CUI Xiao-jing, MA Qing-guo, TANG Jian-ke, DING Li-feng. Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6

Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene

doi: 10.1016/S1872-5813(21)60064-6
Funds:  The project was supported by the National Science Foundation of China (22072105), Natural Science Foundation of Shanxi Province of China (201901D111321), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0655)
  • Received Date: 2021-01-25
  • Rev Recd Date: 2021-02-21
  • Available Online: 2021-03-11
  • Publish Date: 2021-08-31
  • The effects of steaming at varying times and temperatures on ZSM-5 pore structures, framework Al distribution, acid properties and ethanol to propene (ETP) catalytic performance were systematically studied in this study. The results show that the crystallinity and specific surface areas of steam treated ZSM-5 samples decrease with the increase treatment time and temperature. 27Al MAS NMR and Co(Ⅱ) exchange-ICP results show that the isolated framework Al species (Alsingle) can be preferentially removed from the zeolite framework, while the paired Al sites (Alpairs) remain relatively stable after steam treatment. The characterization of Py-IR reveals that the concentration of B acid sites and the acid strength are all declined with the steaming time or temperature increase. The catalytic results of ETP at 450 ℃ show that the sample after steaming gives improved selectivities to propene and butene at the expense of ethene conversion and alkanes selectivity relative to the unmodified zeolite. Besides, a good positive correlation between ethylene conversion and Alsingle concentration is found, whereas the propene formation is influenced by the combination effect of Alsingle and Alpairs sites.
  • loading
  • [1]
    翟岩亮, 张少龙, 张络明, 尚蕴山, 王文轩, 宋宇, 姜彩彤, 巩雁军. 不同B, Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报,2019,35(11):1248−1258. doi: 10.3866/PKU.WHXB201901062

    ZHAI Yan-liang, ZHANG Shao-long, ZHANG Luo-ming, SHANG Yun-shan, WANG Wen-xuan, SONG Yu, JIANG Cai-tong, GONG Yan-jun. Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance[J]. Acta Phys-Chim Sin,2019,35(11):1248−1258. doi: 10.3866/PKU.WHXB201901062
    [2]
    WANG S, ZHANG L, LI S Y, QIN Z F, SHI D Z, HE S P, YUAN K, WANG P F, ZHAO T S, FAN S B, DONG M, LI J F, FAN W B, WANG J G. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins[J]. J Catal,2019,377:81−97. doi: 10.1016/j.jcat.2019.07.028
    [3]
    申文杰. ZSM-5分子筛强弱酸梯度分布增强其MTP反应的转化效率[J]. 物理化学学报,2019,35(11):1179−1182. doi: 10.3866/PKU.WHXB201906068

    SHENG Wen-jie. The strong and weak acid distributions of ZSM-5 zeolite promote its MTP reaction performance[J]. Acta Phys-Chim Sin,2019,35(11):1179−1182. doi: 10.3866/PKU.WHXB201906068
    [4]
    BECERRA J, FIGUEREDO M, COBO M. Thermodynamic and economic assessment of the production of light olefins from bioethanol[J]. J Environ Chem Eng,2017,5:1554−1564. doi: 10.1016/j.jece.2017.02.035
    [5]
    ZHANG L, WANG S, SHI D Z, QIN Z F, WANG P F, WANG G F, LI J F, DONG M, FAN W B, WANG J G. Methanol to olefins over H-RUB-13 zeolite: Regulation of framework aluminum siting and acid density and their relationship to the catalytic performance[J]. Catal Sci Technol,2020,10:1835−1847. doi: 10.1039/C9CY02419K
    [6]
    OIKAWA H, SHIBATA Y, INAZU K, IWASE Y, MURAI K, HYODO S, KOBAYASHI G, BABA T. Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst[J]. Appl Catal A: Gen,2006,312:181−185. doi: 10.1016/j.apcata.2006.06.045
    [7]
    DAI W L, SUN X M, TANG B, WU G J, LI L D, GUAN N J, HUNGER M. Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13[J]. J Catal,2014,314:10−20. doi: 10.1016/j.jcat.2014.03.006
    [8]
    RODEMERCK U, KONDRATENKO E V, STOYANOVA M, LINKE D. Study of reaction network of the ethylene-to-propene reaction by means of isotopically labelled reactants[J]. J Catal,2020,389:317−327. doi: 10.1016/j.jcat.2020.06.009
    [9]
    RAMASAMY K K, WANG Y. Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction conditions and Si/Al ratio on the product distributions[J]. Catal Today,2014,237:89−99. doi: 10.1016/j.cattod.2014.02.044
    [10]
    FURUMOTO Y, HARADA Y, TSUNOJI N, TAKAHASHI A, FUJITANI T, IDE Y, SADAKANE M, SANO T. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Appl Catal A: Gen,2011,399:262−267. doi: 10.1016/j.apcata.2011.04.009
    [11]
    TAKAHASHI A, XIA W, NAKAMURA I, SHIMADA H, FUJITANI T. Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts[J]. Appl Catal A: Gen,2012,423−424:162−167. doi: 10.1016/j.apcata.2012.02.029
    [12]
    HUANGFU J J, MAO D S, ZHAI X L, GUO Q S. Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene[J]. Appl Catal A: Gen,2016,520:99−104. doi: 10.1016/j.apcata.2016.04.016
    [13]
    ZHANG S L, GONG Y J, ZHANG L L, LIU Y S, DOU T, XU J, DENG F. Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property[J]. Fuel Process Technol,2015,129:130−138. doi: 10.1016/j.fuproc.2014.09.006
    [14]
    ARAMBURO L R, RUIZ-MARTINEZ J, SOMMER L, ARSTAD B, BUITRAGO-SIERRA R, SEPULVEDA-ESCRIBANO A, ZANDBERGEN H W, OLSBYE U, DE GROOT F M F, WECKHUYSEN B M. X-Ray Imaging of SAPO-34 molecular sieves at the nanoscale: Influence of steaming on the methanol-to-hydrocarbons reaction[J]. ChemCatChem,2013,5:1386−1394. doi: 10.1002/cctc.201200670
    [15]
    NIU X J, GAO J, WANG K, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [16]
    WANG S, LI S Y, ZHANG L, QIN Z F, DONG M, LI J F, WANG J G, FAN W B. Insight into the effect of incorporation of boron into ZSM-11 on its catalytic performance for conversion of methanol to olefins[J]. Catal Sci Technol,2017,7:4766−4779. doi: 10.1039/C7CY01428G
    [17]
    DEDECEK J, TABOR E, SKLENAK S. Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions[J]. ChemSusChem,2018,11:1−22. doi: 10.1002/cssc.201702374
    [18]
    PASHKOVA V, KLEIN P, DEDECEK J, TOKAROVA V, WICHTERLOVA B. Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework[J]. Microporous Mesoporous Mater,2015,202:138−146. doi: 10.1016/j.micromeso.2014.09.056
    [19]
    ONG L H, DOMOK M, OLINDO R, VAN VEEN A C, LERCHER J A. Dealumination of HZSM-5 via steam-treatment[J]. Microporous Mesoporous Mater,2012,164:9−20. doi: 10.1016/j.micromeso.2012.07.033
    [20]
    TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Co-conversion of methanol and light alkenes over acidic zeolite catalyst H-ZSM-22: Simulated recycle of non-gasoline range products[J]. Appl Catal A: Gen,2015,494:68−76. doi: 10.1016/j.apcata.2015.01.035
    [21]
    WU W Z, GUO W Y, XIAO W D, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci,2011,66:4722−4732. doi: 10.1016/j.ces.2011.06.036
    [22]
    ARAMBURO L R, DE SMIT E, ARSTAD B, VAN SCHOONEVELD M M, SOMMER L, JUHIN A, YOKOSAWA T, ZANDBERGEN H W, OLSBYE U, DE GROOT F M, WECKHUYSEN B M. X-ray imaging of zeolite particles at the nanoscale: Influence of steaming on the state of aluminum and the methanol-to-olefin reaction[J]. Angew Chem Int Ed,2012,51:3616−3619. doi: 10.1002/anie.201109026
    [23]
    NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [24]
    LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal,2018,8:7688−7697. doi: 10.1021/acscatal.8b02112
    [25]
    MAIER S M, JENTYS A, LERCHER J A. Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study[J]. J Phys Chem C,2011,115:8005−8013. doi: 10.1021/jp108338g
    [26]
    BARBERA K, BONINO F, BORDIGA S, JANSSENS T V W, BEATO P. Structure-deactivation relationship for ZSM-5 catalysts governed by framework defects[J]. J Catal,2011,280:196−205. doi: 10.1016/j.jcat.2011.03.016
    [27]
    SAZAMA P, WICHTERLOVA B, DEDECEK J, TVARUZKOVA Z, MUSILOVA Z, PALUMBO L, SKLENAK S, GONSIOROVA O. FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons[J]. Microporous Mesoporous Mater,2011,143:87−96. doi: 10.1016/j.micromeso.2011.02.013
    [28]
    LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6:7311−7325. doi: 10.1021/acscatal.6b01771
    [29]
    ALMUTAIRI S M T, MEZARI B, PIDKO E A, MAGUSIN P C M M, HENSEN E J M. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite[J]. J Catal,2013,307:194−203. doi: 10.1016/j.jcat.2013.07.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (751) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return