Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1549-1557. doi: 10.1016/S1872-5813(21)60077-4
Citation: SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1549-1557. doi: 10.1016/S1872-5813(21)60077-4

Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution

doi: 10.1016/S1872-5813(21)60077-4
Funds:  The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Revitalization Talents Program(XLYC1802057), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019010280-JH3/301) and Young Top Talents of Fushun Talent Plan (FSYC202007001)
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-04-06
  • Available Online: 2021-04-28
  • Publish Date: 2021-10-30
  • Zn-Co(OH)2 precursor was hydrothermally deposited on carbon paper at 120 ℃, using cobalt nitrate and zinc nitrate as raw materials. Then Zn-Co(OH)2 was etched and partially sulfided into CoSOH/Co(OH)2 with 5 mol/L NaOH and 1 mol/L Na2S aqueous solution at room temperature. The catalytic performance in oxygen evolution reaction (OER) was investigated. XRD, SEM, TEM, XPS were used to characterize the microstructure, physical and chemical properties of the catalyst. The results show that the used method can etch Zn atoms, create oxygen vacancies and dope sulfur. The oxygen vacancies and doped sulfur play a positive role in enhancing the OER performance. In addition, amorphous CoSOH also exhibited better OER activity. The synergy between CoSOH and Co(OH)2 finally induces the best catalytic properties (overpotential η=310 mV, Tafel slope b=90 mV/dec) and long-term electrochemical stability, that is CoSOH/Co(OH)2 possess superior electrocatalytic oxygen evolution performance.
  • loading
  • [1]
    贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报,2017,38(10):2329−2331.

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ,2017,38(10):2329−2331.
    [2]
    PENG L S, AHMAD S S S, WEI Z D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chin J Catal,2018,39(10):1575−1593. doi: 10.1016/S1872-2067(18)63130-4
    [3]
    HWANG J, RAO R, GIORDANO L, KATAYAMA Y, YU Y, SHAO-HORN Y. Perovskites in catalysis and electrocatalysis[J]. Science,2017,358(6364):751−756. doi: 10.1126/science.aam7092
    [4]
    SUEN N T, HUNG S F, QUAN Q, ZHANG N, XU Y J, CHEN H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem Soc Rev,2017,46(2):337−365. doi: 10.1039/C6CS00328A
    [5]
    YANG J Z, YU Z B, SUN W, LI Y, WU H D, GENG Z X, YANG Z X. Efficient electrocatalytic performance of WP nanorods propagated on WS2/C for hydrogen evolution reduction[J]. ChemElectroChem,2020,7(14):3082−3088. doi: 10.1002/celc.202000649
    [6]
    GUO S T, TAN W, QIU J Y, DU J L, YANG Z X, WANG X R. Classification of spatially confined reactions and the electrochemical applications of molybdenum-based nanocomposites[J]. Aust J Chem,2020,73(7):587−600. doi: 10.1071/CH19505
    [7]
    李志学, 任铁强, 耿忠兴, 杨占旭. 片状Co9S8/ZnS/C复合材料的制备及电催化产氧性能[J]. 无机化学学报,2019,35(12):2318−2322.

    LI Zhi-xue, REN Tie-qiang, GENG Zhong-xing, YANG Zhan-xu. Preparation and Electrocatalytic performance of flake Co9S8/ZnS/C composites for oxygen evolution reduction[J]. Chin J Inorg Chem,2019,35(12):2318−2322.
    [8]
    CONSIDINE M J, DIAZ-VIVANCOS P, KERCHEV P, SIGNORELLI S, AGUDELO-ROMERO P, GIBBS DANIEL J, FOYER C H. Learning to breathe: developmental phase transitions in oxygen status[J]. Trends Plant Sci,2017,22(2):140−153. doi: 10.1016/j.tplants.2016.11.013
    [9]
    YANG Q Q, LIU L, XIAO L, ZHANG L, LI J, WEI Z D. Co9S8@N, S-codoped carbon core-shell structured nanowires: constructing a fluffy surface for high-density active sites[J]. J Mater Chem A,2018,6(30):14752−14760. doi: 10.1039/C8TA03604G
    [10]
    YANG Q J, WANG Q S, LONG Y, WANG F, WU L L, PAN J, HAN J, LEI Y, SHI W D, SONG S Y. In situ formation of Co9S8 quantum dots in MOF-Derived ternary metal layered double hydroxide nanoarrays for high performance hybrid supercapacitors[J]. Adv Energy Mater,2020,10(7):1903193. doi: 10.1002/aenm.201903193
    [11]
    JIN S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Lett,2017,2(8):1937−1938. doi: 10.1021/acsenergylett.7b00679
    [12]
    CAO D F, LIU D B, CHEN S M, MOSES O A, CHEN X J, XU W J, WU C Q, ZHENG L R, CHU S Q, JIANG H L, WANG C D, GE B H, WU X J, ZHANG J, SONG L. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst[J]. Energy Environ Sci,2021,14:906−915. doi: 10.1039/D0EE02276D
    [13]
    ZENG Y F, CHEN L J, CHEN R, WANG Y Y, XIE C, TAO L, HUANG L L, WANG S Y. One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions[J]. J Mater Chem A,2018,6(47):24311−24316. doi: 10.1039/C8TA08149B
    [14]
    LI W, WANG D D, ZHANG Y Q, LI T, WANG T H, ZOU Y Q, WANG Y Y, CHEN R, WANG S Y. Defect engineering for fuel-cell electrocatalysts[J]. Adv Mater,2020,32(19):1907879. doi: 10.1002/adma.201907879
    [15]
    WANG Y Y, QIAO M, LI Y F, WANG S Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies(Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction[J]. Small,2018,14(17):1800136. doi: 10.1002/smll.201800136
    [16]
    HOU J G, ZHANG B, LI Z W, CAO S Y SUN Y Q, WU Y Z, GAO Z M, SUN L C. Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting[J]. ACS Catal,2018,8(5):4612−4621. doi: 10.1021/acscatal.8b00668
    [17]
    WAN L J, YAN S C, FENG J Y, YANG Z S, FAN X X, LI Z S, ZOU Z G. Solvothermal synthesis of core-shell ZnO hollow microhemispheres[J]. Colloid Surf A-Physicochem Eng Asp,2012,396:46−50. doi: 10.1016/j.colsurfa.2011.12.039
    [18]
    CHEN L L, ZHANG J Y, REN X, GE R X, TENG W Q, SUN X P, LI X M. A Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media[J]. Nanoscale,2017,9(43):16632−16637. doi: 10.1039/C7NR06001G
    [19]
    CABRERA-GERMAN D, GOMEZ-SOSA G, HERRERA-GOMEZ A. Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: Cobalt spinel[J]. Surf Interface Anal,2016,48(5):252−256. doi: 10.1002/sia.5933
    [20]
    LUKOWSKI M A, DANIEL A S, MENG F, FORTICAUX A, LI L S, JIN S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc,2013,135(28):10274−10277. doi: 10.1021/ja404523s
    [21]
    FABER M S, DZIEDZIC R, LUKOWSKI M A, S. KAISER N, DING Q, JIN S. High-performance electrocatalysis using metallic cobalt pyrite(CoS2) micro-and nanostructures[J]. J Am Chem Soc,2014,136(28):10053−10061. doi: 10.1021/ja504099w
    [22]
    YIN J, LI Y, LV F, LU M, SUN K, WANG W, WANG L, CHENG F Y, LI Y F, XI P X, GUO S J. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-Air batteries driven water splitting devices[J]. Adv Mater,2017,29(47):1704681.1−1704681.8.
    [23]
    LIU Y W, XIAO C, LYU M J, LIN Y, CAI W Z, HUA P C, TONG W, ZOU Y M, XIE Y. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions[J]. Angew Chem Int Ed,2015,127(38):11383−11387. doi: 10.1002/ange.201505320
    [24]
    CAI P W, HUANG J H, CHEN J X, WEN Z H. Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium[J]. Angew Chem Int Ed,2017,129(17):4936−4939. doi: 10.1002/ange.201701280
    [25]
    LANG S, ZHAN K M, LIU S Q. Photocatalytic degradation of MO and phenol over novel β-CoOOH/g-C3N4 composite under visible light irradiation[J]. Mater Lett,2018,228:121−124. doi: 10.1016/j.matlet.2018.05.134
    [26]
    SHI Y M, DU W, ZHOU W, WANG C H, LU S S, LU S Y, ZHANG B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angew Chem Int Ed,2020,132(50):22656−22660. doi: 10.1002/ange.202011097
    [27]
    WU T L, PI M Y, WANG X D, ZHANG D K, CHEN S J. Three-dimensional metal-organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen[J]. Phys Chem Chem Phys,2017,19(3):2104−2110. doi: 10.1039/C6CP07294A
    [28]
    JIANG Y Y, DONG K, LU Y Z, LIU J W, CHEN B, SONG Z Q, NIU L. Bimetallic oxide coupled with B-doped graphene as highly efficient electrocatalyst for oxygen evolution reaction[J]. Sci China-Mater,2020,63(7):1247−1256. doi: 10.1007/s40843-020-1282-6
    [29]
    施嘉伦, 盛敏奇, 吴琼, 吕凡. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能[J]. 材料研究学报,2020,34(4):25−33.

    SHI Jia-lun, SHENG Min-qi, WU Qiong, LV Fan. Preparation of electrode materials of amorphous Co-W-B/Carbon cloth composite and their electro-catalytic performance for electrolysis of water[J]. Chin J Mater Res,2020,34(4):25−33.
    [30]
    MABAYOJE O, SHOOLA A, WYGANT B MULLINS B. The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”[J]. ACS Energy Lett,2016,1(1):195−201. doi: 10.1021/acsenergylett.6b00084
    [31]
    GUAN D Q, RYU G, HU Z W, ZHOU J, DONG C L, HUANG Y C, ZHANG K F, ZHONG Y J, ZHU M, WU X H, PAO C, LIN H, CHEN C, ZHOU W, SHAO Z P. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors[J]. Nat Commun,2020,11(1):1−10. doi: 10.1038/s41467-019-13993-7
    [32]
    ZHAO C X, LI B Q, ZHAO M, LIU J N, ZHAO L D, CHEN X, ZHANG Q. Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis[J]. Energy Environ Sci,2020,13(6):1711−1716. doi: 10.1039/C9EE03573G
    [33]
    WILDE P, DIECKHÖFER S, QUAST T, XIANG W K, BHATT A, CHEN Y T, SEISEL S, BARWE S, ANDRONESCU C, LI T, SCHUMANN W, MASA J. Insights into the formation, chemical stability, and activity of transient NiyP@NiOx core-shell heterostructures for the oxygen evolution reaction[J]. ACS Appl Energy Mater,2020,3(3):2304−2309. doi: 10.1021/acsaem.9b02481
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (270) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return