Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
GAO Tian-yu, ZHAO Yong-hua, ZHENG Ze, ZHANG Qi-jian, LIU Hui-min, WANG Huan, FENG Xiao-qian, MENG Qing-run. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2
Citation: GAO Tian-yu, ZHAO Yong-hua, ZHENG Ze, ZHANG Qi-jian, LIU Hui-min, WANG Huan, FENG Xiao-qian, MENG Qing-run. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2

Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether

doi: 10.1016/S1872-5813(21)60103-2
Funds:  The project was supported by Natural Science Foundation of China (22075120), Liaoning Provincial Natural Science Foundation of China (2019-ZD-0699) and the Key Projects of Liaoning Province Education Department of China (JZL202015405)
  • Received Date: 2021-03-03
  • Rev Recd Date: 2021-04-16
  • Available Online: 2021-05-28
  • Publish Date: 2021-10-30
  • A series of acid-activated montmorillonites (Acid-MMTs) were prepared via Na-montmorillonite treated with nitric acid solution at different treatment temperature and time. And the Acid-MMTs used as solid acid were physically mixed with commercial Cu/ZnO/Al2O3 to obtain bifunctional catalysts for steam reforming of dimethyl ether (SRD) reaction. The results showed that the structure, texture and acidity of Acid-MMTs were significantly changed compared with Na-MMT, which was dependent on the acid treatment conditions. The structure and acidity of Acid-MMTs obviously affected the SRD performance over bifunctional catalyst. The bifunctional catalyst composed of the Na-MMT activated in 20% nitric acid solution at 80 ℃ for 12 h (Acid-MMT-80/12) and Cu/ZnO/Al2O3 exhibited the best SRD performance, with the dimethyl ether conversion and H2 yield reaching 97% and 94% under the conditions of p =0.1 MPa, t =350 ℃, GHSV=3000 h−1, respectively, and DME conversion and H2 yield remained basically constant in 10 h, indicating that the catalyst had better stability.
  • loading
  • [1]
    BERNAY C, MARCHAND M, CASSIR M. Prospects of different fuel cell technologies for vehicle applications[J]. J Power Sources,2002,108(1/2):139−152. doi: 10.1016/S0378-7753(02)00029-0
    [2]
    YANG M, MEN Y, LI S, CHEN G. Enhancement of catalytic activity over TiO2-modifed Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming[J]. Appl Catal A: Gen,2012,433−434:26−34. doi: 10.1016/j.apcata.2012.04.032
    [3]
    SINGH S, JAIN S, VENKATESWARAN P S, TIWARI A K, NOUNI M R, PANDEY J K, GOEL S. Hydrogen: A sustainable fuel for future of the transport sector[J]. Renewable Sustainable Energy Rev,2015,51:623−633. doi: 10.1016/j.rser.2015.06.040
    [4]
    SOBYANIN V A, CAVALLARO S, FRENI S. Dimethyl ether steam reforming to feed molten carbonate fuel cells (MCFCs)[J]. Energy Fuels,2000,14(6):1139−1142. doi: 10.1021/ef990201s
    [5]
    GALVITA V V, SEMIN G L, BELYAEV V D, YURIEVA T M, SOBYANIN V A. Production of hydrogen from dimethyl ether[J]. Appl Catal A: Gen,2001,216(1/2):85−90. doi: 10.1016/S0926-860X(01)00540-3
    [6]
    INAGAKI R, MANABE R, HISAI Y, KAMITE Y, YABE T, OGO S, SEKINE Y. Steam reforming of dimethyl ether promoted by surface protonics in an electric field[J]. Int J Hydrog Energy,2018,43(31):14310−14318. doi: 10.1016/j.ijhydene.2018.05.164
    [7]
    冯冬梅, 左宜赞, 王德峥, 王金福. 二甲醚水蒸气重整制氢的ZSM-5和Cu-Zn 的复合催化体系[J]. 催化学报,2009,30(3):223−229. doi: 10.3321/j.issn:0253-9837.2009.03.010

    FENG Dong-mei, ZUO Yi-zan, WANG De-zheng, WANG Jin-fu. Steam reforming of dimethyl ether over coupled ZSM-5 and Cu-Zn-based catalysts[J]. Chin J Catal,2009,30(3):223−229. doi: 10.3321/j.issn:0253-9837.2009.03.010
    [8]
    FAUNGNAWAKIJ K, KIKUCHI R, EGUCHI K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether[J]. J Power Sources,2007,164(1):73−79. doi: 10.1016/j.jpowsour.2006.09.072
    [9]
    SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A: Gen,2006,309(2):210−223. doi: 10.1016/j.apcata.2006.05.009
    [10]
    GAO T Y, ZHAO Y H, ZHANG Q J, WANG H, DAI J, ZHENG Z. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether[J]. React Kinet Mech Catal,2019,128:235−249. doi: 10.1007/s11144-019-01642-5
    [11]
    FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed,2008,47:9314−9317. doi: 10.1002/anie.200802809
    [12]
    DENG X, YANG T, ZHANG Q, CHU Y, LUO J, ZHANG L, LI P. A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor[J]. Int J Hydrog Energy,2019,44(5):2417−2425.
    [13]
    KIM D, PARK G, CHOI B, KIM Y B. Reaction characteristics of dimethyl ether (DME) steam reforming catalysts for hydrogen production[J]. Int J Hydrog Energy,2017,42(49):29210−29221.
    [14]
    HUANG J, DING T, MA K, CAI J, SUN Z, TIAN Y, JIANG Z, ZHANG J, ZHENG L, LI X. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem,2018,10:3862−3871.
    [15]
    RAMOS E, DAVIN L, ANGURELL I, LEDESMA C, LLORCA J. Improved stability of Pd/Al2O3 prepared from palladium nanoparticles protected with carbosilane dendrons in the dimethyl ether steam reforming reaction[J]. ChemCatChem,2015,7(14):2179−2187. doi: 10.1002/cctc.201500202
    [16]
    ZANG Y, DONG X, PING D, GENG J, DANG H. Green routes for the synthesis of hierarchical HZSM-5 zeolites with low SiO2/Al2O3 ratios for enhanced catalytic performance[J]. Catal Commun,2018,113:51−54. doi: 10.1016/j.catcom.2018.05.018
    [17]
    VICENTE J, GAYUBO A G, ERENA J, AGUAYO A T, OLAZAR M, BILBAO J. Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite[J]. Appl Catal B: Environ,2013,130−131(3):73−83.
    [18]
    LONG X, SONG Y H, LIU Z T, LIU Z W. Insights into the long-term stability of the magnesia modified H-ZSM-5 as an efficient solid acid for steam reforming of dimethyl ether[J]. Int J Hydrog Energy,2019,44(39):21481−21494. doi: 10.1016/j.ijhydene.2019.06.177
    [19]
    LONG X, ZHANG Q, LIU Z T, QI P, LU J, LIU Z W. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether[J]. Appl Catal B: Environ,2013,134−135:381−388. doi: 10.1016/j.apcatb.2013.01.034
    [20]
    LÜ J, ZHOU S, MA K, MENG M, TIAN Y. The effect of P modification on the acidity of HZSM-5 and P-HZSM-5/CuO-ZnO-Al2O3 mixed catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chin J Catal,2015,36(8):1295−1303. doi: 10.1016/S1872-2067(15)60883-X
    [21]
    ZHAO Y H, WANG Y J, HAO Q Q, LIU Z T, LIU Z W. Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt[J]. Fuel Process Technol,2015,136:87−95. doi: 10.1016/j.fuproc.2014.10.019
    [22]
    HAO Q Q, WANG G W, LIU Z T, LIU Z W. Nanocatalysis for Fuels and Chemicals[M]. Washington, D. C: American Chemical Society (ACS), 2012: 167–193.
    [23]
    FROST R L, LOCOS O B, RUAN H, KLOPROGGE J T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vib Spectrosc,2011,27(1):1−13.
    [24]
    THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87:1051−1069. doi: 10.1515/pac-2014-1117
    [25]
    GIL A, KORILI S A, VICENTE M A. Recent advances in the control and characterization of the porous structure of pillared clay catalysts[J]. Catal Rev,2008,50(2):153−221. doi: 10.1080/01614940802019383
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1886) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return