Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Shu-qin, LI Xiao-xue, LI Dan. Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7
Citation: WANG Shu-qin, LI Xiao-xue, LI Dan. Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7

Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity

doi: 10.1016/S1872-5813(22)60070-7
Funds:  The project was supported by the National Basic Research Program of China (2018YFB060420103) and National Natural Science Foundation of HeBei Province (E2014502111)
  • Received Date: 2022-09-25
  • Accepted Date: 2022-11-04
  • Rev Recd Date: 2022-10-24
  • Available Online: 2022-11-08
  • Publish Date: 2023-05-15
  • Comparing the composite TiO2 prepared by hydrothermal sol gel method and microwave-assisted sol gel method, the microwave-assisted sol gel method with shorter time and better crystallinity was finally used to prepare ZnO-TiO2 materials with different composite ratios. The specific surface area, pore volume and pore size of ZnO- TiO2 composite are significantly larger than those of TiO2. The surface acidity of ZnO-TiO2 composite is stronger. The band structure is conducive to the efficient separation of electrons and holes, and the catalytic reduction activity and selectivity are stronger. The best composite ratio of ZnO and TiO2 is optimized to be 0.2 through photocatalytic denitration experiments. For NOx with an initial concentration of 6.83 mg/m3, under the light source condition irradiated by 65 W energy-saving lamp, the visible photocatalytic removal efficiency is as high as 85%. When the NOx concentration is increased to 13.67 mg/m3 and the ammonia nitrogen ratio is 1∶1, the denitration efficiency is as high as 96%, which is 43% higher than that of pure TiO2. According to mechanism analysis, the whole reaction can be divided into adsorption and photocatalysis. Adsorption is the speed control step of the reaction. NO is oxidized to NO2 under the action of adsorbed oxygen, and photogenerated electrons can further reduce NO2 to N2. After NH3 is introduced, NH3 and photogenerated electrons work together to improve NOx removal efficiency.
  • loading
  • [1]
    HAN L, CAI S, GAO M, HASEGAWA J Y, WANG P, ZHANG J, SHI L, ZHANG D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev,2019,119(19):10916−10976. doi: 10.1021/acs.chemrev.9b00202
    [2]
    PERUMAL S K, KAISARE N, KUMMARI S K, AGHALAYAM P. Low-temperature NH3-SCR of NO over robust RuNi/Al-SBA-15 catalysts: Effect of Ru loading[J]. J Environ Chem Eng,2022,10(5):108288. doi: 10.1016/j.jece.2022.108288
    [3]
    SHANG X, HU G, HE C, ZHAO J, ZHANG F, XU Y, ZHANG Y, LI J, CHEN J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. J Ind Eng Chem,2012,18(1):513−519. doi: 10.1016/j.jiec.2011.11.070
    [4]
    QI C, BAO W, WANG L, LI H, WU W. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts,2017,7(12):.110−110. doi: 10.3390/catal7040110
    [5]
    ZHANG F, CHENG Z, KANG L, CUI L, LIU W, XU X, HOU G, YANG H. A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity[J]. RSC Adv,2015,5(41):32088−32091. doi: 10.1039/C5RA01353D
    [6]
    PETERNEL I T, KOPRIVANAC N, BOZIC A M, KUSIC H M. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution[J]. J Hazard Mater,2007,148(1/2):477−484.
    [7]
    MOFOKENG S J, KUMAR V, KROON R E, NTWAEABORWA O M. Structure and optical properties of Dy3+ activated sol-gel ZnO-TiO2 nanocomposites[J]. J Alloys Compd,2017,711:121−131. doi: 10.1016/j.jallcom.2017.03.345
    [8]
    HAN J, LIU Y, SINGHAL N, WANG L, GAO W. Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation[J]. Chem Eng J,2012,213:150−162. doi: 10.1016/j.cej.2012.09.066
    [9]
    TASSALIT D, CHEKIR N, BENHABILES O, BENTAHAR F, LAOUFI N A. Photocatalytic Degradation of Tylosin and Spiramycin in Water by using TiO2 and ZnO Catalysts under UV Radiation[M]. Energy, Transportation and Global Warming. City, 2016: 695–706.
    [10]
    PRASANNALAKSHMI P, SHANMUGAM N. Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis[J]. Mater Sci Semicond Process,2017,61:114−124. doi: 10.1016/j.mssp.2017.01.008
    [11]
    ZHANG P, WANG T, CHANG X, GONG J. Effective charge carrier utilization in photocatalytic conversions[J]. Acc Chem Res,2016,49(5):911−921. doi: 10.1021/acs.accounts.6b00036
    [12]
    SHENG F, XU C, JIN Z, GUO J, FANG S, SHI Z, WANG J. Simulation on Field Enhanced Electron Transfer between the Interface of ZnO-Ag Nanocomposite[J]. J Phys Chem C,2013,117(36):18627−18633. doi: 10.1021/jp405186c
    [13]
    SARKAR A, SINGH A K, KHAN G G, SARKAR D, MANDAL K. TiO2/ZnO core/shell nano-heterostructure arrays as photo-electrodes with enhanced visible light photoelectrochemical performance[J]. RSC Adv,2014,4(98):55629−55634. doi: 10.1039/C4RA09456E
    [14]
    SABZEHMEIDANI M M, KARIMI H, GHAEDI M. Sonophotocatalytic treatment of rhodamine B using visible-light-driven CeO2/Ag2CrO4 composite in a batch mode based on ribbon-like CeO2 nanofibers via electrospinning[J]. Environ Sci Pollut Res Int,2019,26(8):8050−8068. doi: 10.1007/s11356-019-04253-8
    [15]
    ZHANG L, LI H, LIU Y, TIAN Z, YANG B, SUN Z, YAN S. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO-NH2-RGO nanocomposite[J]. RSC Adv,2014,4(89):48703−48711. doi: 10.1039/C4RA09227A
    [16]
    王淑勤, 武金锦, 杜志辉. Co-Ce共掺杂对TiO2催化剂室温可见光催化脱硝性能的影响[J]. 燃料化学学报,2019,47(3):361−369.

    WANG Shu-qin, WU Jin-jin, DU Zhi-hui. Study on selective catalytic reduction denitration performance of Ce-Co co-doped TiO2 catalyst[J]. J Fuel Chem Technol,2019,47(3):361−369.
    [17]
    王淑勤, 李金梦, 刘文博. 氟钒锰共掺对TiO2柱撑膨润土光催化脱硝性能的影响[J]. 燃料化学学报,2020,48(9):1131−1139. doi: 10.3969/j.issn.0253-2409.2020.09.013

    WANG Shu-qin, LI Jin-meng, LIU Wen-bo. Effect of F, V and Mn co-doping on the catalytic performance of TiO2-pillared bentonite in the photocatalytic denitration[J]. J Fuel Chem Technol,2020,48(9):1131−1139. doi: 10.3969/j.issn.0253-2409.2020.09.013
    [18]
    DELSOUZ KHAKI M R, SHAFEEYAN M S, RAMAN A A A, DAUD W M A W. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation[J]. J Mol Liq,2018,258:354−365. doi: 10.1016/j.molliq.2017.11.030
    [19]
    HARIHARAN C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited[J]. Appl Catal A: Gen,2006,304:55−61. doi: 10.1016/j.apcata.2006.02.020
    [20]
    KWIATKOWSKI M, BEZVERKHYY I, SKOMPSKA M. ZnO nanorods covered with a TiO2 layer: Simple sol-gel preparation, and optical, photocatalytic and photoelectrochemical properties[J]. J Mater Chem A,2015,3(24):12748−12760. doi: 10.1039/C5TA01087J
    [21]
    陈玉婷, 朱雷, 肖扬帆. 镧改性ZnO-TiO2光催化氧化活性染料的实验研究[J]. 工业安全与环保,2015,41(1):4−7 + 32. doi: 10.3969/j.issn.1001-425X.2015.01.002

    CHEN Yu-ting, ZHU Lei, XIAO Yang-fan. Experimental study on lanthanum modified ZnO-TiO2 photocatalytic oxidation of reactive dyes[J]. Ind Safety Environ Prot,2015,41(1):4−7 + 32. doi: 10.3969/j.issn.1001-425X.2015.01.002
    [22]
    CHEN D, ZHANG H, HU S, LI J H. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites[J]. J Phys Chem C,2011,112:117−122.
    [23]
    ZHAO Y, HAN J, SHAO Y, FENG Y. Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation[J]. Environ Technol,2009,30(14):1555−1563. doi: 10.1080/09593330903313786
    [24]
    刘磊. SiO2基宽光谱光热转化相变储能纳米胶囊制备及性能研究[D]. 北京: 北京科技大学, 2022.

    LIU Lei. Preparation and characterization of SiO2-based wide spectrum photothermal conversion phase-change energy storage nanocapsules [D]. Beijing: University of Science and Technology Beijing , 2022.
    [25]
    SHANMUGAM M, ALSALME A, ALGHAMDI A, JAYAVEL R. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants[J]. J Photochem Photobiol B,2016,163:216−223. doi: 10.1016/j.jphotobiol.2016.08.029
    [26]
    XIE C, YANG S, LI B, WANG H, SHI J W, LI G, NIU C. C-doped mesoporous anatase TiO2 comprising 10nm crystallites[J]. J Colloid Interface Sci,2016,476:1−8. doi: 10.1016/j.jcis.2016.01.080
    [27]
    SUWARNKAR M B, DHABBE R S, KADAM A N, GARADKAR K M. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method[J]. Ceram Int,2014,40(4):5489−5496. doi: 10.1016/j.ceramint.2013.10.137
    [28]
    莫晓朋. 溶胶凝胶–微波法合成LiTi2(PO4)3及其电化学性能研究[D]. 郑州: 郑州大学, 2012.

    MO Xiao-ming. Study on electrochemical properties of LiTi2(PO4)3 synthesized by sol-gel and microwave method[D]. Zhengzhou: Zhengzhou University , 2012.
    [29]
    刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪. 稀土金属掺杂对锐钛矿型TiO2光催化活性影响的理论和实验研究[J]. 高等学校化学学报,2013,34(2):434−440. doi: 10.7503/cjcu20120487

    LIU Yue, YU Lin, WEI Zhi-gang, PAN Zhan-chang, ZOU Yan-di, XIE Ying-hao. Theoretical and experimental studies on photocatalytic potential of rare earth doped anatase TiO2[J]. Chem J Chin Univ,2013,34(2):434−440. doi: 10.7503/cjcu20120487
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return