Volume 52 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LIANG Yuning, WANG Baohui, LI Shuohui, CHI Weimeng, BI Mingchun, LIU Yuxuan, WANG Yiran, YAO Ming, ZHANG Tianying, CHEN Ying. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2
Citation: LIANG Yuning, WANG Baohui, LI Shuohui, CHI Weimeng, BI Mingchun, LIU Yuxuan, WANG Yiran, YAO Ming, ZHANG Tianying, CHEN Ying. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2

Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water

doi: 10.1016/S1872-5813(23)60396-2
More Information
  • A stable metal-organic framework (MOF), MIL-101(Fe), was successfully synthesised using a solvothermal method and employed as a novel photocatalyst for degrading crude oil in oilfield wastewater. Through optimisation of reaction conditions, the following optimal parameters were determined: a dark reaction time of 30 min, a light reaction time of 30 min, a pH of 5.5, a catalyst amount of 150 mg/L, and a reaction temperature of 303.15 K. Under these reaction conditions, an impressive removal of 94.73% was achieved. This study represents the first application of Fe-based MOFs in the photocatalytic degradation of oilfield wastewater. MIL-101(Fe) notably demonstrated excellent stability under mild acid conditions and can be efficiently recycled. These findings offer valuable insights into using MIL-101(Fe) as a promising material for industrial applications in removing crude oil from oil-polluted water through photocatalytic degradation.
  • loading
  • [1]
    HASSANI S S, DARAEE M, SOBAT Z. Advanced development in upstream of petroleum industry using nanotechnology[J]. Chin J Chem Eng,2020,28(6):1483−1491. doi: 10.1016/j.cjche.2020.02.030
    [2]
    SHEN Y, LI D W, WANG L L, et al. Superelastic polyimide nanofiber-based aerogels modified with silicone nano filaments for ultrafast oil/water separation[J]. ACS Appl Mater Interfaces,2021,13(17):20489−20500. doi: 10.1021/acsami.1c01136
    [3]
    LIU B C, LI H S, LIU N, et al. Experimental study on filtration effect of oilfield sewage based on new polyurethane modified materials[J]. Water Sci Technol,2020,82(10):2039−2050. doi: 10.2166/wst.2020.462
    [4]
    ZHU X L, RAN Y L, GUO W J, et al. Optimization of reinjection treatment technology for oilfield wastewater in Longdong area[J]. E3S Web of Conferences,2020,194:04046. doi: 10.1051/e3sconf/202019404046
    [5]
    HOFFMANN M R, MARTIN S T, CHOI W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004
    [6]
    SINGH M, PAKSHIRAJAN K, TRIVEDI V. A study on combined effect of methylene blue and sodium anthraquinone-2-sulphonate on inactivation efficiency of escherichia coli and enterococcus hirae[J]. Appl Catal B: Environ,2019,88(3):283−291.
    [7]
    SIEDL N, BAUMANN S O, ELSER M J, et al. Particle networks from powder mixtures: generation of Tio2-Sno2 heterojunctions via surface charge-induced heteroaggregation[J]. J Phys Chem C,2019,116(43):22967−22973.
    [8]
    MA S L, ZHAN S H, XIA Y G, et al. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light[J]. Catal Today,2019,330:179−188. doi: 10.1016/j.cattod.2018.04.014
    [9]
    ZHU T T, Ye X J, ZHANG Q Q, et al. Efficient utilisation of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. J Hazard Mater,2019,367:277−285. doi: 10.1016/j.jhazmat.2018.12.093
    [10]
    XIA Q, WANG H, HUANG B B, et al. State‐of‐the‐art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small,2019,15(2):1803088. doi: 10.1002/smll.201803088
    [11]
    RUI K, ZHAO G, CHEN Y, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv Funct Mater,2018,28(26):1801554. doi: 10.1002/adfm.201801554
    [12]
    ZHAO F, LIU Y, HAMMOUDA S B, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. Appl Catal B: Environ,2020,272:119033. doi: 10.1016/j.apcatb.2020.119033
    [13]
    HAN H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: effect of irradiation wavelength and real water matrixes[J]. Chem Eng J,2019,368:273−284. doi: 10.1016/j.cej.2019.02.190
    [14]
    ZHANG Y, XIONG M Y, SUN A R, et al. MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants[J]. J Clean Prod,2021,290:125782. doi: 10.1016/j.jclepro.2021.125782
    [15]
    MILLANGE F, GUILLOU N, MEDINA M E. Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled by various host-guest interactions[J]. J Mater Chem A , 2010, 22, 14: 4237–4245.
    [16]
    KIM P J, YOU Y W, PARK H, et al. Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule[J]. Chem Eng J,2015,262:683−690. doi: 10.1016/j.cej.2014.09.123
    [17]
    KIM B C, HONG W G, LEE S M, et al. Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites[J]. Int J Hydrogen Energ,2010,35:1300−1304.
    [18]
    AI L H, ZHANG C H, LI L L, et al. Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Appl Catal B: Environ, 2014, 148–149: 191−200.
    [19]
    LI X W, ZHAO H L, LU P P, et al. Photocatalytic activity of monolithic TiO2-SiO2 composite aerogels obtained by ambient drying for degrading oily wastewater[J]. J Univ Sci Technol Beijing,2013,35(5):651−658.
    [20]
    ZHOU G H. Degradation of oily wastewater by coated photocatalyst with visible light response[D]. Dalian: Dalian Maritime University, 2014.
    [21]
    GAO Y H, CHEN Y, WANG Z X, et al. Treatment of oily wastewater by photocatalytic degradation using nano Fe-TiO2[J]. Adv Mater Res,2013,781−784(2606):2241−2244.
    [22]
    ZHANG Y, ZHAO L. Ozone-assisted photocatalytic degradation of oil-polluted water on graphene/ZnIn2S4 composites[J]. Chem Res Appl,2022,34(8):1719−1726.
    [23]
    XIA D G, DU Y L. Preparation of MoS2/ZnIn2S4 and photocatalytic degradation of oily wastewater[J]. Ind Water Wastewater,2022,53(5):51−56.
    [24]
    LI X W, LÜ P P, YAO K F, et al. Preparation of monolithic TiO2 aerogel via ambient drying and photocatalytic degradation of oily wastewater[J]. J Inorg Mater,2012,27(11):1153−1158.
    [25]
    RUAN Y. Study on the performance of P-C3N4 coated with MoS2 for the degradation of oily wastewater[J]. Energy Chem Ind,2022,43(5):64−68.
    [26]
    ROUSHERNAS P, YUSOP Z, MAJIDNIA Z. Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles[J]. Desalin Water Treat,2016,57(13):5837−5841. doi: 10.1080/19443994.2015.1005149
    [27]
    CHU Y H, WU X, LU D Q, et al. Preparation of nano-Ag@ZnO/Zn2Ti3O8 and its application in photocatalytic degradation of oilfield wastewater[J]. Contemp Chem Ind,2022,51(2):350−353.
    [28]
    SUN B. Study on microwave synthesis, characterisation and properties of nanocomposites[D]. Fushun: Liaoning Petrochemical University, 2020.
    [29]
    CHENG C K, DERAHMAN M R, KHAN M R. Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania[J]. J Environ Chem Eng,2015,1(3):261−270.
    [30]
    CHENG C K, DERAHMAN M R, NG K H, et al. Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation[J]. J Clean Prod,2016,112(1):1128−1135.
    [31]
    RUSLI U N, ALIAS N H, SHAHRUDDIN M Z, et al. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment. Munich: MATEC Web of Conferences, 2016, 69: 05003.
    [32]
    RAN L T. Study on modification of g-C3N4 photocatalyst and its degradation of oily wastewater[D]. Xi'an: Xi'an Shiyou University, 2022.
    [33]
    ALIAS N H, JAAFAR J, SAMITSU S, et al. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers[J]. Chemosphere,2018,204(AUG.):79−86.
    [34]
    WANG W Y, WANG L Q, ZHANG R J. Preparation of expanded graphite-ZnO composite and its photocatalytic degradation of crude oil[J]. Environ Prot Chem Ind,2007,27(4):367−370.
    [35]
    LI Y H, ZHANG Q Q, JIANG J X, et al. Long-acting photocatalytic degradation of crude oil in seawater via combination of TiO2 and N-doped TiO2/ reduced graphene oxide[J]. Environ Technol,2021,42(5/8):860−870.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return