Turn off MathJax
Article Contents
ZUO Youhua, LI Rong, HUA Junfeng, HAO Siyu, XIE Jing, XU Lixin, YE Mingfu, WAN Chao. Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60442-1
Citation: ZUO Youhua, LI Rong, HUA Junfeng, HAO Siyu, XIE Jing, XU Lixin, YE Mingfu, WAN Chao. Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60442-1

Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane

doi: 10.1016/S1872-5813(24)60442-1
Funds:  The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), China Postdoctoral Science Foundation (2019M662060, PC2022046, 2020T130580), Open Research Funds of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110), Open Research Funds of Key Laboratory of Green En-ergy and Environment Catalysis(FJ-GEEC202204)and 2022, 2023 National Undergraduate Innovation and entrepreneurship training program (202210360037, S202310260212), Supported by the Open Project of Engineering Research Center of Biofilm Water Purification and Utiliza-tion Technology of Ministry of Education (BWPU2023KF06).
  • Received Date: 2024-01-04
  • Accepted Date: 2024-02-26
  • Rev Recd Date: 2024-02-07
  • Available Online: 2024-04-23
  • Solution A was prepared with cobalt nitrate and copper nitrate, and solution B was prepared with phenyldicarboxylic acid(PTA) and N,N-dimethylformamide(DMF), and the two solutions were used to prepare Co/Cu Lavashield skeleton series materials(Co/Cu-MIL precursors) by solvothermal method, and the further direct carbonization of the precursor system prepared the MOFs derivatives, i.e., bimetallic carbon nanorods(CoxCu1−x/CNR) catalyst. The morphology and composition were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that CoxCu1−x/CNR was successfully obtained after Co/Cu-MIL was roasted at high temperature, and the catalytic activity of the catalyst obtained was optimal when x=0.5, the solvent heat temperature was 120°C, and the roasting temperature was 650 ℃. The TOF value of the Co0.5Cu0.5/CNR catalyst catalyzed the hydrolysis of ammonia borane (AB) for the production of hydrogen was 2718.21 h−1, and the reaction The activation energy was 51.64 kJ/mol, and the catalyst had good cycling stability, and the catalytic activity decreased after 10 cycles, but still maintained 100% conversion of AB.
  • loading
  • [1]
    MBOYI C D, POINSOT D, ROGER J, et al. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation[J]. Small,2021,17(44):2102759. doi: 10.1002/smll.202102759
    [2]
    YANG Z X, LI X G, YAO Q L, et al. 2022 roadmap on hydrogen energy from production to utilizations[J]. Rare Metals,2022,41:3251−3267. doi: 10.1007/s12598-022-02029-7
    [3]
    吴慧, 郑君宁, 左佑华, 等. NiPd/TiO2催化剂的制备及催化甲酸分解制氢[J]. 精细化工, 2023.

    WU Hui, ZHENG Junning, ZUO Youhua, et al. Preparation of NiPd/TiO2 catalysts and catalytic hydrogen production from formic acid decomposition[J]. Fine Chem, 2023.)
    [4]
    WAN C, ZHOU L, XU S M, et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [5]
    MORAD Z, KARIM T, ANTONIO J N, et al. Effective photocatalytic conversion of formic acid using iron, copper and sulphate doped TiO2[J]. J. Cent. South Univ.,2022,29(11):3592−3607. doi: 10.1007/s11771-022-5172-9
    [6]
    梁雨, 李贵, 郑君宁, 等. NiPt/SBA-15 纳米催化剂的制备及其催化水合肼分解产氢性能研究[J]. 燃料化学学报,2023,51(5):684−692.

    LIANG Yu, LI Gui, ZHENG Junning, et al. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. J Fuel Chem Technol,2023,51(5):684−692.
    [7]
    曹云钟, 郑君宁, 吴慧, 等. Pt基催化剂催化氨硼烷水解产氢的研究进展[J]. 稀有金属,2023,47(8):1122−1131.

    CAO Yunzhong, ZHENG Junning, WU Hui, et al. Advances in hydrogen production by ammonia borane hydrolysis over Pt-based catalysts[J]. Rare Met,2023,47(8):1122−1131.
    [8]
    KINSIZ B N, FILIZ B C, DEPREN S K, et al. Nano-casting procedure for catalytic cobalt oxide bead preparation from calcium-alginate capsules: Activity in ammonia borane hydrolysis reaction[J]. Applied Materials Today,2021,22:100952. doi: 10.1016/j.apmt.2021.100952
    [9]
    CAI C, HAN S B, LIU W, et al. Tuning catalytic performance by controlling reconstruction process in operando condition[J]. Appl. Catal. , B,2020,260:118103. doi: 10.1016/j.apcatb.2019.118103
    [10]
    LI Y, HU M W, WANG J S, et al. DFT studies on the Ru-catalyzed hydrolysis of ammonia borane[J]. J. Organomet. Chem.,2019,899:120913. doi: 10.1016/j.jorganchem.2019.120913
    [11]
    李燕, 邓雨真, 俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展,2019,38(12):5330−5338.

    LI Yan, DENG Yuzhen, YU Jingling, et al. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem. Ind. Eng. Prog.,2019,38(12):5330−5338.
    [12]
    DEMIRCI U B. Mechanistic insights into the thermal decomposition of ammonia borane, a material studied for chemical hydrogen storage[J]. Inorg. Chem. Front.,2021,8:1900−1930. doi: 10.1039/D0QI01366H
    [13]
    SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem. Phys. Lett.,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [14]
    王小燕, 张若凡, 司航, 等. 椰壳炭负载钌催化剂的制备及其催化氨硼烷水解制氢性能[J]. 石油炼制与化工,2023,54(7):64−70.

    WANG Xiaoyan, ZHANG Ruofan, SI Hang, et al. Preparation of coconut shell charcoal-loaded ruthenium catalysts and their catalytic performance for hydrogen production from hydrolysis of ammonia borane[J]. Pet Process Petrochem,2023,54(7):64−70.
    [15]
    任杨斌, 范燕平, 刘宪云, 等. 镍基催化剂催化氨硼烷水解产氢研究进展[J]. 中国材料进展,2022,41(4):288−295.

    REN Yangbin, FAN Yanping, LIU Xianyun, et al. Research progress on hydrogen generation by catalytic hydrolysis of ammonia borane over Ni catalysts[J]. Materials China,2022,41(4):288−295.
    [16]
    AKBAYRAK S, OZKAR S. Ammonia borane as hydrogen storage materials[J]. Int. J. Hydrogen Energy,2018,43(40):18592−18606. doi: 10.1016/j.ijhydene.2018.02.190
    [17]
    邱小魁, 张若凡, 王小燕, 等. 竹茹丝炭负载钌催化剂光催化氨硼烷水解产氢研究[J]. 无机盐工业,2023,55(10):153−158.

    QIU Xiaokui, ZHANG Ruofan, WANG Xiaoyan, et al. Hydrogen production by photocatalytic hydrolysis of ammonia borane over Bamboo Rhizoma Pinelliae silk charcoal loaded ruthenium catalysts[J]. Inorg Chem Ind,2023,55(10):153−158.
    [18]
    LU Q, HUTCHINGS G S, YU W, et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution[J]. Nat. Commun.,2015,6(1):6567. doi: 10.1038/ncomms7567
    [19]
    SUKACKIENĖ Z, VALECKYTĖ G, KEPENIENĖ V, et al. Non-precious metals catalysts for hydrogen generation[J]. Coat.,2023,13(10):1740. doi: 10.3390/coatings13101740
    [20]
    GUPTA S, FERNANDES R, PATEL R, et al. A review of cobalt-based catalysts for sustainable energy and environmental applications[J]. Appl. Catal. , A,2023,661:119254. doi: 10.1016/j.apcata.2023.119254
    [21]
    黄康, 朱梅婷, 张飞鹏, 等. 一种高效双功能电催化剂 CoP/Co@ NPC@ rGO的制备[J]. 工程科学学报,2020,42(1):91−98.

    (HUANG Kang, ZHU Meiting, ZHANG Feipeng, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen evolution reaction[J]. Chin J Eng,2020,42(1):91−98.
    [22]
    YAN J M, ZHANG X B, SHIOYAMA H, et al. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles[J]. J. Power Sources,2010,195(4):1091−1094. doi: 10.1016/j.jpowsour.2009.08.067
    [23]
    SANG W L, WANG C Y, ZHANG X H, et al. Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane[J]. Int. J. Hydrogen Energy,2017,42(52):30691−30703. doi: 10.1016/j.ijhydene.2017.10.130
    [24]
    LU D S, LIAO J Y, ZHONG S D, et al. Cu0.6Ni0.4Co2O4 nanowires, a novel noble-metal-free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production[J]. Int. J. Hydrogen Energy,2018,43(11):5541−5550. doi: 10.1016/j.ijhydene.2018.01.129
    [25]
    LI H, EDDAOUDI M, O’KEEFFE M. Design and synthesis of an exceptionally stable and highly porous metalorganic framework[J]. Nature,1999,402:276−279. doi: 10.1038/46248
    [26]
    DE VILLENOISY T, ZHENG X, WONG V, et al. Principles of design and synthesis of metal derivatives from MOFs[J]. Adv. Mater. , 2023: 2210166.
    [27]
    PODOR R, LE GOFF X, LAUTRU J, et al. Direct observation of the surface topography at high temperature with SEM[J]. Microsc. Microanal.,2020,26(3):397−402. doi: 10.1017/S1431927620001348
    [28]
    陈峰, 黄莹莹, 颜桂炀, 等. 氧化铜/氧化锌/3A分子筛光催化剂的制备及其可见光脱氮性能[J]. 应用化学,2015,32(9):1040−1047

    CHEN Feng, HUANG Yingying, YAN Guiyang, et al. Preparation and visible light denitrification performance of copper oxide/Zinc oxide/3A molecular sieve photocatalyst[J]. Chin. J. Appl. Chem,2015,32(9):1040−1047.
    [29]
    CHOI W S, SHIN H C. Microporous sponge structure with copper-cobalt oxide hybrid nanobranches[J]. J. Alloys Compd.,2017,692:670−675. doi: 10.1016/j.jallcom.2016.09.090
    [30]
    DING S, ZHU C, HOJO H, et al. Insights into the effect of cobalt substitution into copper-manganese oxides on enhanced benzene oxidation activity[J]. Appl. Catal. , B,2023,323:122099. doi: 10.1016/j.apcatb.2022.122099
    [31]
    YANG G. , GUAN S. Y. , SEHRISH M. , et al. Co−CoOx supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane[J]. Green Energy Environ. , 2020.
    [32]
    PEI X, SHU H, FENG Y. Preparation of nitrogen-doped carbon-based bimetallic copper-cobalt catalysis based on deep learning and its monitoring application in furfural hydrogenation[J]. Scientific Programming, 2022.https://doi.org/10.1155/2022/7702776
    [33]
    LE S. D. , NISHIMURA S. Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid[J]. Appl. Catal. B Environ. , 2021, 282: 119619.
    [34]
    MOSTAFA M M M, BAJAFAR W, GU L, et al. Electrochemical characteristics of nanosized Cu, Ni, and Zn cobaltite spinel materials[J]. Catal.,2022,12(8):893.
    [35]
    ZHANG Q, ZUO J, WANG L, et al. Non noble-metal copper–cobalt bimetallic catalyst for efficient catalysis of the hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran under mild conditions[J]. ACS omega,2021,6(16):10910−10920. doi: 10.1021/acsomega.1c00676
    [36]
    WAN C, LIANG Y, ZHOU L, et al. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis[J]. Green Energy Environ. , 2022.
    [37]
    CHUAICHAM C, LI W, WILSON K, et al. Surfactant and template-free hydrothermal assembly of Cu2O visible light photocatalysts for trimethoprim degradation[J]. Appl. Catal. B Environ. , 2021, 284: 119741.
    [38]
    FENG Y F, WANG H Z, CHEN X D, et al. Simple synthesis of Cu2O-CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int. J. Hydrogen Energy.,2020,45:17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [39]
    YANG X, LI Q L, LI L L, et al. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J. Power Sources,2019,431:135−143. doi: 10.1016/j.jpowsour.2019.05.038
    [40]
    YUAN Y, CHEN X, ZHANG X, et al. A MOF-derived CuCo(O)@carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane[J]. Inorg. Chem. Front.,2020,7(10):2043−2049. doi: 10.1039/D0QI00023J
    [41]
    DU Y, CAO N, YANG L, et al. One-step synthesis of magnetically recyclable rGO supported Cu@Co core–shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New J. Chem.,2013,37(10):3035−3042. doi: 10.1039/c3nj00552f
    [42]
    LIU Q, ZHANG S, LIAO J, et al. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production[J]. J. Power Sources,2017,355:191−198. doi: 10.1016/j.jpowsour.2017.04.057
    [43]
    FENG Y, WANG H, CHEN X, et al. Simple synthesis of Cu2O–CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int. J. Hydrogen Energy,2020,45(35):17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [44]
    LI J, REN X, LV H, et al. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide[J]. J. Hazard. Mater.,2020,391:122199. doi: 10.1016/j.jhazmat.2020.122199
    [45]
    DEKA J R, SAIKIA D, LU N F, et al. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction[J]. Appl. Surf. Sci,2021,538:148091. doi: 10.1016/j.apsusc.2020.148091
    [46]
    LIAO J, FENG Y, ZHANG X, et al. CuO-Co3O4 composite nanoplatelets for hydrolyzing ammonia borane[J]. ACS Appl. Nano Mater.,2021,4(8):7640−7649. doi: 10.1021/acsanm.1c00713
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return