Volume 51 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHOU Zhi-chao, WANG Jiao-fei, BAI Yong-hui, LÜ Peng, SONG Xu-dong, SU Wei-guang, YU Guang-suo, DING Lu. Correlation mechanism between structure and gasification characteristics of typical municipal solid waste (MSW) disposable bamboo chopsticks hydrochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 718-728. doi: 10.19906/j.cnki.JFCT.2022084
Citation: ZHOU Zhi-chao, WANG Jiao-fei, BAI Yong-hui, LÜ Peng, SONG Xu-dong, SU Wei-guang, YU Guang-suo, DING Lu. Correlation mechanism between structure and gasification characteristics of typical municipal solid waste (MSW) disposable bamboo chopsticks hydrochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 718-728. doi: 10.19906/j.cnki.JFCT.2022084

Correlation mechanism between structure and gasification characteristics of typical municipal solid waste (MSW) disposable bamboo chopsticks hydrochar

doi: 10.19906/j.cnki.JFCT.2022084
Funds:  The project was supported by National Key Research and Development Plan (2021YFE0108900)
  • Received Date: 2022-09-29
  • Accepted Date: 2022-11-08
  • Rev Recd Date: 2022-10-28
  • Available Online: 2022-11-16
  • Publish Date: 2023-06-15
  • Due to the complex composition, large fluctuation of material characteristics and low energy density of MSW, the gasification characteristics of its hydrochars are not well understood. Therefore, it is of great significance to study the gasification characteristics of single component hydrochars. In this paper, a typical component of MSW, disposable bamboo chopsticks (DBC), was used as raw material to study the effect of hydrothermal carbonization (HTC) conditions on the structural properties and gasification reaction characteristics of DBC hydrochars. The results showed that HTC improved the energy quality of DBC, the HHV of DBC-230-60 sample was 1.62 times of that of DBC, and H/C and O/C decreased from 1.57 and 0.76 of original sample to 1.00 and 0.33 of DBC-230-60. The results of characterization also demonstrate that the aromatization degree of hydrochar and hydrochar semicoke is higher than that of the DBC original one. The specific surface area of hydrochar is lower than that of DBC original sample, but hydrochar semicoke is higher than that of DBC original sample semicoke. Compared with hydrothermal time, hydrothermal temperature has the more significant effect on the structure and gasification reactivity of hydrochar. Higher hydrothermal temperature increases the aromatization degree of hydrochar and decreases the gasification reactivity of hydrochar. The gasification reactivity of hydrochar is worse than that of DBC original sample, which is mainly because the increase of the degree of semicoke arbulization of hydrochar has a greater negative effect on the gasification reactivity than the abundance of pore structure.
  • loading
  • [1]
    KAZA S, YAO L C, BHADA TATA P, VAN WOERDEN F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050[M]. Washington D. C: World Bank, 2018.
    [2]
    RENOU S, GIVAUDAN J G, POULAIN S, DIRASSOUYAN F, MOULIN P. Landfill leachate treatment: Review and opportunity[J]. J Hazard Mater,2008,150(3):468−493. doi: 10.1016/j.jhazmat.2007.09.077
    [3]
    竹涛, 种旭阳, 王若男, 薛泽宇, 陈苗苗, 叶泽甫, 朱竹军. 生活垃圾焚烧飞灰处理技术研究进展[J]. 洁净煤技术,2022,28(7):189−201. doi: 10.13226/j.issn.1006-6772.21080202

    ZHU Tao, ZHONG Xu-yang, WANG Ruo-nan, XUE Ze-yu, CHEN Miao-miao, YE Ze-fu, ZHU Zhu-jun. Research progress on the treatment technology of municipal solid waste incineration fly ash[J]. Clean Coal Technol,2022,28(7):189−201. doi: 10.13226/j.issn.1006-6772.21080202
    [4]
    LI Y, ZHAO X, LI Y, LI X. Waste incineration industry and development policies in China[J]. Waste Manage,2016,46:234−241.
    [5]
    马盛伟, 朱磊, 李彬, 施沈杰. 城市生活垃圾生产现状及处置方式的研究进展[J]. 四川建材,2020,46(7):24−25. doi: 10.3969/j.issn.1672-4011.2020.07.012

    MA Sheng-wei, ZHU Lei, LI Bin, SHI Shen-jie. The research progress on the production status and disposal methods of municipal solid waste[J]. Sichuan Build Mater,2020,46(7):24−25. doi: 10.3969/j.issn.1672-4011.2020.07.012
    [6]
    杨华, 薛东卫, 赵运武, 任志宏. 浅论垃圾焚烧烟气处理技术[J]. 机械,2003,(5):4−6. doi: 10.3969/j.issn.1006-0316.2003.05.003

    YANG Hua, XUE Dong-wei, ZHAO Yun-wu, REN Zhi-hong. Discussion on waste incineration flue gas treatment technology[J]. Machinery,2003,(5):4−6. doi: 10.3969/j.issn.1006-0316.2003.05.003
    [7]
    DIGMAN B, JOO H S, KIM D. Recent progress in gasification/ pyrolysis technologies for biomass conversion to energy: Sustainable energy[J]. Environ Prog Sustain,2009,28(1):47−51. doi: 10.1002/ep.10336
    [8]
    AKBARIAN A, ANDOOZ A, KOWSARI E, RAMAKRISHNA S, ASGARI S, CHESHMEH Z A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy[J]. Bioresour Technol,2022,362:127774. doi: 10.1016/j.biortech.2022.127774
    [9]
    SALMAN S, KALOGIROU S A, RANJBARI M, AMIRI H, MAHIAN O, BENYAMIN K, JAFARY T, NIZAMI A, GUPTA V K, AGHAEI S, PENG W, TABATABAEI M, AGHBASHLO M. Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review[J]. Renewable Sustainable Energy Rev,2022,156:111975. doi: 10.1016/j.rser.2021.111975
    [10]
    IRFAN M, LI A, ZHANG L, WANG M, CHEN C, KHUSHK S. Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst[J]. Int J Hydrogen Energy,2019,44(16):8051−8061. doi: 10.1016/j.ijhydene.2019.02.048
    [11]
    HU M, GUO D, MA C, HU Z, ZHANG B, XIAO B, LUO S, WANG J. Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture[J]. Energy,2015,90:857−863. doi: 10.1016/j.energy.2015.07.122
    [12]
    AYAS G, OZTOP HF. Thermal analysis of different Refuse Derived Fuels samples[J]. Therm Sci,2021,6(25):4395−4406.
    [13]
    TIAN W, WEI X, WU D, LI J, SHENG HZ. Analysis of ingredient and heating value of municipal solid waste[J]. J Environ Sci,2001,1(13):87−91.
    [14]
    ZHAO P, SHEN Y, GE S, CHEN Z, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy,2014,131:345−367. doi: 10.1016/j.apenergy.2014.06.038
    [15]
    PENG C, ZHAI Y, ZHU Y, XU B, WANG T, LI C, ZENG G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics[J]. Fuel,2016,176:110−118. doi: 10.1016/j.fuel.2016.02.068
    [16]
    ZHENG X, CHEN W, YING Z, JIANG Z, YE Y, WANG B, FENG Y, DOU B. Structure-reactivity correlations in pyrolysis and gasification of sewage sludge derived hydrochar: Effect of hydrothermal carbonization[J]. Energy Fuels,2020,34(2):1965−1976. doi: 10.1021/acs.energyfuels.9b04275
    [17]
    XIAO K, LIU H, LI Y, YI L, ZHANG X, HU H, YAO H. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization[J]. Bioresour Technol,2018,265:432−436. doi: 10.1016/j.biortech.2018.06.014
    [18]
    WEI J, GUO Q, DING L, YOSHIKAWA K, YU G. Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification[J]. Appl Energy,2017,206:1354−1363. doi: 10.1016/j.apenergy.2017.10.005
    [19]
    KANG S, LI X, FAN J, CHANG J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, D-Xylose, and Wood Meal[J]. Ind Eng Chem Res,2012,51(26):9023−9031. doi: 10.1021/ie300565d
    [20]
    GAO Y, WANG X, WANG J, LI X, CHENG J, YANG H, CHEN H. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy,2013,58:376−383. doi: 10.1016/j.energy.2013.06.023
    [21]
    GULEC F, RIESCO L M G, WILLIAMS O, KOSTAS E T, SAMSON A, LESTER E. Hydrothermal conversion of different lignocellulosic biomass feedstocks-Effect of the process conditions on hydrochar structures[J]. Fuel,2021,302:121166. doi: 10.1016/j.fuel.2021.121166
    [22]
    ZHENG X, CHEN W, YING Z, HUANG J, JI S, WANG B. Thermodynamic investigation on gasification performance of sewage sludge-derived hydrochar: Effect of hydrothermal carbonization[J]. Int J Hydrogen Energy,2019,44(21):10374−10383. doi: 10.1016/j.ijhydene.2019.02.200
    [23]
    MOSQUEDA A, WEI J, MEDRANO K, GONZALES H, DING L, YU G, YOSHIKAWA K. Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends[J]. Appl Energy,2019,250:92−97. doi: 10.1016/j.apenergy.2019.05.008
    [24]
    GUDUCU I, ALPER K, EVCIL T, TEKIN K, OHTANI H, KARAGOZ S. Effects of hydrothermal carbonization on products from fast pyrolysis of cellulose[J]. J Energy Inst,2021,99:299−306. doi: 10.1016/j.joei.2021.10.004
    [25]
    LU X, PELLECHIA P J, FLORA J R V, BERGE N D. Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose[J]. Bioresour Technol,2013,138:180−190. doi: 10.1016/j.biortech.2013.03.163
    [26]
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy,2010,35(12):5347−5353. doi: 10.1016/j.energy.2010.07.025
    [27]
    SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
    [28]
    ZHUANG X, ZHAN H, SONG Y, YIN X, WU C. Structure-reactivity relationships of biowaste-derived hydrochar on subsequent pyrolysis and gasification performance[J]. Energ Convers,2019,199:112014. doi: 10.1016/j.enconman.2019.112014
    [29]
    CAO X, PENG X, SUN S, ZHONG L, SUN R. Hydrothermal conversion of bamboo: Identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions[J]. J Agric Food Chem,2014,62(51):12360−12365. doi: 10.1021/jf505074d
    [30]
    BACH Q, SKREIBERG Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction[J]. Renewable Sustainable Energy Rev,2016,54:665−677. doi: 10.1016/j.rser.2015.10.014
    [31]
    林有胜. 基于组分基团的城市生活垃圾水热碳化机理及其应用基础研究[D]. 广东: 华南理工大学, 2018.

    LIN You-sheng. The research on the mechanism of high-grade fuel from municipal solid waste by hydrothermal carbonization and application studies of hydrochars[D]. Guangdong: SCUT, 2018.
    [32]
    JAMARI S S, HOWSE J R. The effect of the hydrothermal carbonization process on palm oil empty fruit bunch[J]. Biomass Bioenergy,2012,47:82−90. doi: 10.1016/j.biombioe.2012.09.061
    [33]
    胡志锋. 微波预处理驱动下化学链气化小球藻制取合成气的机理研究[D]. 广东: 华南理工大学, 2016.

    HU Zhi-feng. The study on mechanism of chemical looping gasification of Chlorella vulgaris based on microwave pretreatment[D]. Guangdong: SCUT, 2016.
    [34]
    HASHAIKEH R, FANG Z, BUTLER I S, HAWARI J, KOZINSKI J A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion[J]. Fuel,2007,86(10-11):1614−1622. doi: 10.1016/j.fuel.2006.11.005
    [35]
    GUO S, DONG X, WU T, SHI F, ZHU C. Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk[J]. J Anal Appl Pyrol,2015,116:1−9. doi: 10.1016/j.jaap.2015.10.015
    [36]
    LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12-13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [37]
    XIN S, YANG H, CHEN Y, YANG M, CHEN L, WANG X, CHEN H. Chemical structure evolution of char during the pyrolysis of cellulose[J]. J Anal Appl Pyrolysis,2015,116:263−271. doi: 10.1016/j.jaap.2015.09.002
    [38]
    SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47(9):2281−2289. doi: 10.1016/j.carbon.2009.04.026
    [39]
    BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy,2015,88:703−710. doi: 10.1016/j.energy.2015.05.100
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (511) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return