Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
FU Hao, LIAN Hong-lei. Research progress on the reaction pathway of CO2 methanation[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063
Citation: FU Hao, LIAN Hong-lei. Research progress on the reaction pathway of CO2 methanation[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 428-443. doi: 10.19906/j.cnki.JFCT.2022063

Research progress on the reaction pathway of CO2 methanation

doi: 10.19906/j.cnki.JFCT.2022063
Funds:  The project was supported by Opening Foundation of Henan Provincial Engineering Laboratory of Coal-based Ecological Fine Chemicals (C202003)
  • Received Date: 2022-05-20
  • Accepted Date: 2022-07-18
  • Rev Recd Date: 2022-07-11
  • Available Online: 2022-07-28
  • Publish Date: 2023-04-15
  • CO2 methanation is a very complex heterogeneous catalytic process, in which a variety of intermediates are produced. There are still many controversies and contradictions in the exploration of the reaction pathway of CO2 methanation. In-depth and systematic study of the evolution process of the intermediates formed on the catalyst surface in CO2 methanation will help to further optimize the design of catalyst from the perspective of mechanism, thereby improving the catalytic performance. This paper summarises recent work on the CO2 methanation reaction pathway based on in situ infrared spectroscopy, focusing on the influence of the active metal, carrier, additives and synthesis method of the supported catalyst on the CO2 methanation reaction pathway and the resulting positive effects on catalyst performance. In addition, the controversial points faced at the current stage, such as the activation sites of reaction gases CO2 and H2, the active sites of catalysts and the feasible research methods in the future are discussed in detail.

  • loading
  • [1]
    SABATIER P, SENDERENS J B. Hydrogénation directe des oxydes du carbone en présence de divers métaux divisés[J]. C R Acad Sci,1902,134:514−516.
    [2]
    BAILERA M, LISBONA P, ROMEO L M, ESPATOLERO S. Power to Gas projectsreview: Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable Sustainable Energy Rev,2017,69:292−312.
    [3]
    SHEN L, XU J, ZHU M, HAN Y. Essential role of the support for nickel-based CO2 methanation catalysts[J]. ACS Catal,2010,10:14581−14591.
    [4]
    WOO J, LI C, HERMAWAN P, JIHO Y, JIM P, YANG Y, SENGLIM. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review[J]. Catal Today,2021,368:2−19.
    [5]
    SU X, XU J, LIANG B, DUAN H, HOU B, HUANG Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. J Energy Chem,2016,25:553−565.
    [6]
    ALFREDO S, JUAN C F. Mechanistic Insights into the CO2 methanation catalyzed by supported metals: A Review[J]. J Nanosci Nanotechnol,2019,19:3110−3123.
    [7]
    GUO Y, MEI S, YUAN K, WANG D, LIU H, YAN C, ZHANG Y. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and h-spillover effect[J]. ACS Catal,2018,8:6203−6215.
    [8]
    ZHOU G, LIU H, CUI K, JIA A, HU G, JIAO Z, LIU Y, ZHANG X. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation[J]. Appl Surf Sci,2016,383:248−252.
    [9]
    KUSAMA H, BANDO K K, OKABE K, ARAKAWA H. CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors[J]. Appl Catal A: Gen,2001,205:285−294.
    [10]
    ASHOK J, LANG M, KAWI S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods[J]. Catal Today,2017,281:304−311. doi: 10.1016/j.cattod.2016.07.020
    [11]
    NAVARRO J S, SZEGO A, BOBADILLA L F, LAGUNA O H, SARRIA F R, CENTENO M A, ODRIOZOLA J A. Operando spectroscopic evidence of the induced effect of residual species in the reaction intermediates during CO2 hydrogenation over ruthenium nanoparticles[J]. ChemCatChem,2019,11:2063−2068.
    [12]
    ALFREDO S, JOSE F L, ARMANDO A C, JUANC F G. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Appl Catal B: Environ,2017,218:611−620. doi: 10.1016/j.apcatb.2017.06.063
    [13]
    ANTOINE B, COLAS S, MARC J, GEORGE H, ALEJANDRO K, PATRICIO R. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst[J]. Appl Catal B: Environ,2012,113−114:2−10.
    [14]
    LIZANDRA M N C A, MAYRA P A, MARTIN A, CALEB D W, GARY J, RAIMUNDO C R N. CO2 methanation over metal catalysts supported on ZrO2: Effect of the nature of the metallic phase on catalytic performance[J]. Chem Eng Sci,2021,239:116604. doi: 10.1016/j.ces.2021.116604
    [15]
    AZIZ M A A, JALIL A A, TRIWAHYONO S, SIDIK S M. Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles[J]. Appl Catal A: Gen,2014,486:115−122. doi: 10.1016/j.apcata.2014.08.022
    [16]
    PEEBLES D E, GOODMAN D W., WHITE J M. Methanation of carbon dioxide on Ni(100) and the effects of surface modifiers[J]. J Phys Chem C,1983,87:4378−4387. doi: 10.1021/j100245a014
    [17]
    MICHEL M, RALF D, MICHAEL P, ALBERT R. Transient drift spectroscopy for the determination of the surface reaction kinetics of CO2 methanation[J]. Chem Eng Sci,1994,49:4801−4809. doi: 10.1016/S0009-2509(05)80060-0
    [18]
    DENISE H, RODEMERCK U, URSULA B. Mechanistic study of low temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts[J]. ACS Catal,2016,8:6275−6284.
    [19]
    ZAERA F. Infrared absorption spectroscopy of adsorbed CO: New applications in nanocatalysis for an old approach[J]. ChemCatChem,2012,4:1525−1533.
    [20]
    FENG K, WANG Y, GUO M, ZHANG J, LI Z, DENG T, ZHANG Z, YAN B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts[J]. J Energy Chem,2021,62:153−171. doi: 10.1016/j.jechem.2021.03.054
    [21]
    ALFREDO S, TRINO A, JUAN C. F G. Spectroscopic evidence of surface species during CO2 methanation catalyzed by supported metals: A review[J]. Catal Today,2022,394−396,2-12.
    [22]
    GAGGIOLI C A, STONEBURNER S J, CRAMER C J, GAGLIARDI L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis[J]. ACS Catal,2019,9:8481−8502. doi: 10.1021/acscatal.9b01775
    [23]
    NAZMUL H M D, RATTANAWALEE R, GAO M, JIN O, HASEGAWA J Y, KIYOTAKA A, ATSUSHI F, ABHIJIT S. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO[J]. ACS Catal,2021,11:9450−9461. doi: 10.1021/acscatal.1c02041
    [24]
    ALFREDO S G, TRINO A Z, JUAN C F. Spectroscopic evidence of the simultaneous participation of rhodium carbonyls and surface formate species during the CO2 methanation catalyzed by ZrO2-supported Rh[J]. Appl Catal B: Environ,2022,304:120955. doi: 10.1016/j.apcatb.2021.120955
    [25]
    YE R, LI Q, GONG W, WANG T, JOSHUAJAMES RAZINK, LIN L, QIN Y, QIN Y. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation[J]. Appl Catal B: Environ,2020,268:118474. doi: 10.1016/j.apcatb.2019.118474
    [26]
    HE F, ZHUANG J, LU B, LIU X, ZHANG J, SU F. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation[J]. Appl Catal B: Environ,2021,293:120218. doi: 10.1016/j.apcatb.2021.120218
    [27]
    DICOSIMO J I, DÍEZ V K, M XU, IGLESIA E, APESTEGUÍA C R. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. J Catal,1998,178:499−510. doi: 10.1006/jcat.1998.2161
    [28]
    COLEMAN L J I, EPLING W, HUDGINS R R, CROISE E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol[J]. Appl Catal A: Gen,2009,363:52−63. doi: 10.1016/j.apcata.2009.04.032
    [29]
    STEFAN E, OLAF H. On the interaction of CO2 with Ni-Al catalysts[J]. Appl Catal A: Gen, 580,2019,71−80.
    [30]
    JONAS B, JAN H J, VICKI H G. FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3[J]. J Phys Chem B,2006,110:12005−12016.
    [31]
    GUO M, LU G. The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni-Co bimetallic catalysts for CO2 methanation[J]. React Kinet Mech Catal,2014,113:101−113. doi: 10.1007/s11144-014-0732-0
    [32]
    ZHEN W, LI B, LU G, MA J. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species[J]. RSC Adv,2014,4:16472−16479. doi: 10.1039/C3RA47982J
    [33]
    LEA R W, ELAINE GOMEZ, YAN B, YAO S, CHEN J. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Appl Catal B: Environ,2018,224:442−450. doi: 10.1016/j.apcatb.2017.10.036
    [34]
    REN J, QIN X, YANG J, QIN Z, GUO H, LIN J, LI Z. Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: Effect of addition of a second metal[J]. Fuel Process Technol,2015,137:204−211. doi: 10.1016/j.fuproc.2015.04.022
    [35]
    MARC A S, ABHIJEET G, JELENA J, SEBASTIAN W, CHARLOTTE F, ADAM H C, ERISA S, FELIX S J G. Structural dynamics in Ni-Fe catalysts during CO2 methanation-role of iron oxide clusters[J]. Catal Sci Technol,2020,10:7542−7554. doi: 10.1039/D0CY01396J
    [36]
    KONSTANTIN P, KYEONG T J, ALEXIS T B. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia[J]. Langmuir,2001,17:4297−4303. doi: 10.1021/la001723z
    [37]
    SHYAM K, PING L, JINGGUANG G C. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. [J] JACS, 2017, 139, 9739−9754.
    [38]
    JOCHENA H D, LI P, ZHANG L, GEINKH A, ZHANG R, PATRICKH L S, WEY Y. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl Surf Sci,2016,388:653−663. doi: 10.1016/j.apsusc.2015.11.187
    [39]
    GUILLÉN H, GIMÉNEZ M, MARTÍNEZ M, LÓPEZ A B, GARCÍA A. Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres[J]. Appl Catal A: Gen,2020,590:117339−117356. doi: 10.1016/j.apcata.2019.117339
    [40]
    KRISHNA K, BUENO L A, MAKKEE M, MOULIJN J A. Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2[J]. Appl Catal B: Environ,2007,75:189−200. doi: 10.1016/j.apcatb.2007.04.010
    [41]
    SERGIO L R, ARANTXA D, JERÓNIMO J, ESTHER B G, DOLORES L C, AGUSTÍN B L. Effect of Pr in CO2 methanation Ru/CeO2 catalysts[J]. J Phys Chem C,2021,125:12038−12049. doi: 10.1021/acs.jpcc.1c03539
    [42]
    MUHAMMAD Y, LEONG L K, MOHAMMED J K B, HUMAYUN N, AREEB S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2[J]. Fuel,2016,30:8815−8831. doi: 10.1021/acs.energyfuels.6b01723
    [43]
    YU Y, BIAN Z, SONG Y, WANG J, ZHONG Q, SIBUDJING K. Influence of calcination temperature on activity and selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 catalysts for CO2 methanation[J]. Top Catal,2018,61:1514−1527. doi: 10.1007/s11244-018-1010-6
    [44]
    XU Y, CHEN Y, LI L, ZHOU J, SONG M, ZHANG X, YIN Y. Improved low-temperature activity of Ni-Ce/γ-Al2O3 catalyst with layer structural precursor prepared by cold plasma for CO2 methanation[J]. Int J Hydrog Energy,2017,42:13085−13091. doi: 10.1016/j.ijhydene.2017.04.019
    [45]
    LIA W, NIEA X, JIAN X, ZHANG A, DING A, LIU M, LIU Z, GUO Z, SONG C. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation[J]. Appl Catal B: Environ,2018,220:397−408. doi: 10.1016/j.apcatb.2017.08.048
    [46]
    RUI N, ZHANG X, ZHANG F, LIU Z, CAO X, XIE Z, ZOU R, SANJAYA D S, YANG Y, JOS ́E A R, LIU C J. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization[J]. Appl Catal B: Environ,2021,282:119581. doi: 10.1016/j.apcatb.2020.119581
    [47]
    BENJAMIN M, HUDSON W P, STEFAN M, WOLFGANG K. Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy[J]. J Catal,2015,327:48−53. doi: 10.1016/j.jcat.2015.04.006
    [48]
    XU X, TONG Y, HUANG J, ZHU J, FANG X, XU J, WANG X. Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations[J] Fuel, 2021, 283, 118867.
    [49]
    Peri J B. A Model for the Surface of γ-Alumina1[J]. J Phys Chem C,1964,69:220−230.
    [50]
    AGHAYAN M, POTEMKIN D I, RUBIO M F, USKOV S I, SNYTNIKOV P V, HUSSAINOVA I. Template-assisted wet-combustion synthesis offibrous nickel-based catalyst for carbon dioxide methanation and methane steam reforming[J]. ACS Appl Mater Interfaces,2017,9:43553−43562. doi: 10.1021/acsami.7b08129
    [51]
    GAO J, LIU Q, GU F, LIU B, ZHONG Z, SU F. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv,2015,5:22759. doi: 10.1039/C4RA16114A
    [52]
    ADRIÁN Q, UNAIDE L T, BEÑATPEREDA A, JOSÉ A M, JUAN R G. Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation[J]. Appl Catal B: Environ,2018,238:393−403. doi: 10.1016/j.apcatb.2018.07.034
    [53]
    ZHAN Y, WANG Y, GU D, CHEN C, JIANG L, KATSUOMI T. Ni/Al2O3-ZrO2 catalyst for CO2 methanation: The role of γ-(Al, Zr)2O3 formation[J]. Appl Surf Sci,2018,459:74−79. doi: 10.1016/j.apsusc.2018.07.206
    [54]
    WANG X, SHI H, JA H K, JÁNOS S. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient drifts-ms studies[J]. ACS Catal,2015,5:6337−6349. doi: 10.1021/acscatal.5b01464
    [55]
    HAO Z, SHEN J, LIN S, HAN X, CHANG X, LIUB J, LI M, MA X. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni[J]. Appl Catal B: Environ,2021,286:119922. doi: 10.1016/j.apcatb.2021.119922
    [56]
    WANG C, GUAN E, WANG L, CHU X, WU Z, ZHANG J, YANG Z, JIANG Y, ZHANG L, MENG X, BRUCE C G, XIAO F. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation[J]. JACS,2019,141:8482−8488. doi: 10.1021/jacs.9b01555
    [57]
    ALEJANDRO K, PATRICIO R. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. J Catal,2013,301:141−153. doi: 10.1016/j.jcat.2013.02.009
    [58]
    PARASKEVI P, DIMITRIS I K, XENOPHON E V. Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst[J]. Catal Today,2012,181:138−147. doi: 10.1016/j.cattod.2011.05.030
    [59]
    XIANG WANG, HUI SHI, JA HUN KWAK, JÁNOS SZANYI. Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies[J]. ACS Cata,2015,5:6337−6349.
    [60]
    YAN X, HU Y, LIU P, SHA LI, ZHAO B, ZHANG Q, JIAO W, CHEN S, WANG P, LU J, FAN J, DENG X, PAN Y. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B: Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [61]
    KIKKAWA S, TERAMURA K, ASAKURA H, HOSOKAWA H S, TANAKA T. Isolated platinum atoms in Ni/γ-Al2O3 for selective hydrogenation of CO2 toward CH4[J]. J Phys Chem C,2019,123:23446−23454. doi: 10.1021/acs.jpcc.9b03432
    [62]
    WANG F, HE S, CHEN H, WANG B, ZHENG L, WEI M, DAVID G EVANS, DUAN X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. JACS,2016,138:6298−6305. doi: 10.1021/jacs.6b02762
    [63]
    PAN Q, PENG J, SUN T, WANG S, WANG S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites[J]. Cata Com,2014,45:74−78. doi: 10.1016/j.catcom.2013.10.034
    [64]
    MICHIAKI YAMASAKI, HIROKI HABAZAKI, TAKESHI YOSHIDA, EIJI AKIYAMA, EIJI AKIYAMA, KATSUHIKO ASAMI. Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors[J]. Appl Catal A: Gen,1997,163(1/2):187−197. doi: 10.1016/S0926-860X(97)00142-7
    [65]
    ZHOU R, RUI N, FAN Z. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. Int J Hydrog Energy,2016,41:22017−22025. doi: 10.1016/j.ijhydene.2016.08.093
    [66]
    YAN X, LIU Y, ZHAO B, WANG Y, LIU C. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor[J]. Int J Hydrog Energy,2013,38:2283−2291. doi: 10.1016/j.ijhydene.2012.12.024
    [67]
    GUO X, SUN Y, YU Y, ZHU X, LIU C. Carbon formation and steam reforming of methane on silica supported nickel catalysts[J]. Catal Commun,2012,19:61−65. doi: 10.1016/j.catcom.2011.12.031
    [68]
    PENG H, MA Y, LIU W, XU X, FANG X, LIAN J, WANG X, LI C, ZHOU W, YUAN P. Methane dry reforming on Ni/La2Zr2O7 treated by plasma in different atmospheres[J]. J Energy Chem,2015,24:416−424. doi: 10.1016/j.jechem.2015.06.015
    [69]
    JIA X, ZHANG X, RUI N, HU X, LIU C. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl Catal B: Environ,2019,244:159−169. doi: 10.1016/j.apcatb.2018.11.024
    [70]
    SREEDHAR I, VARUN Y, SATYAPAUL A S, VENUGOPAL A. Developmental trends in CO2 methanation using various catalysts[J]. Catal Sci Technol,2019,9:4478. doi: 10.1039/C9CY01234F
    [71]
    YU Y, CHAN Y, BIAN Z, SONG F, WANG J, ZHONG Q, SIBUDJING KAWI. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst: Kinetics and DRIFTS studies[J]. Int J Hydrog Energy,2018,43:15191−15204. doi: 10.1016/j.ijhydene.2018.06.090
    [72]
    PAN Q, PENG J, WANG S, WANG S. In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2[J]. Catal Sci Technol,2014,4:502−509. doi: 10.1039/C3CY00868A
    [73]
    ALDANA P A U, OCAMPO F, KOBL K, LOUIS B, THIBAULT S F, DATURI M, BAZINA P, THOMAS S, ROGER A C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia reaction mechanism by operando IR spectroscopy[J]. Catal Today,2013,215:201−207. doi: 10.1016/j.cattod.2013.02.019
    [74]
    KARELOVIC, RUIZ A, RUIZ P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism[J]. Appl Catal B: Environ,2012,22:237−249.
    [75]
    JUNKO K, HIROSHI A, YOSHIHISA S. Infrared Studies of Adsorbed Species of H2, CO and CO2 over ZrO2[J]. J Chem Soc Faraday T,1988,84:511−519. doi: 10.1039/f19888400511
    [76]
    TANG M, YUAN W, OU Y, LI G, YOU R, LI S, YANG H, ZHANG Z, WANG Y. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review[J]. ACS Catal,2020,10:14419−14450. doi: 10.1021/acscatal.0c03335
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2982) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return