Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
HAN Yu-jing, WANG Hui-xiang, WANG Lian-cheng, HUANG Dong-mei, WANG Peng-fei, LÜ Bao-liang. Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 458-472. doi: 10.19906/j.cnki.JFCT.2022067
Citation: HAN Yu-jing, WANG Hui-xiang, WANG Lian-cheng, HUANG Dong-mei, WANG Peng-fei, LÜ Bao-liang. Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 458-472. doi: 10.19906/j.cnki.JFCT.2022067

Research progress on the in-situ characterizations of iron-based FTS catalysts pretreatment process

doi: 10.19906/j.cnki.JFCT.2022067
Funds:  The project was supported by the National Natural Science Foundation of China (21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (2021017), Research Project of Shanxi Scholarship Council of China (2020-196), Shanxi Province Science Foundation for Youths (201901D211583) and Doctoral Start-up Foundation of Shanxi Province (SQ2019006).
  • Received Date: 2022-07-08
  • Accepted Date: 2022-07-29
  • Rev Recd Date: 2022-07-28
  • Available Online: 2022-08-11
  • Publish Date: 2023-04-15
  • Fe-based Fischer-Tropsch synthesis (FTS) catalysts usually exist as the oxide precursor α-Fe2O3, which have different catalytic activities after being transformed to FexCy under different pretreatment conditions, so it is critical to study the pretreatment process of α-Fe2O3 for whole FTS reaction. However, the phases of Fe-based catalysts in such a process are highly dynamic and complex, and conventional characterizations cannot capture the accurate real-time information in the pretreatment reaction. Therefore, it is necessary and desired to apply various in-situ characterizations in this process, because they can obtain the dynamic changes of phase, morphology, surface structure and properties of the catalyst. And then a relationship between the pretreatment process and the subsequent catalytic performance of FTS will be effectively and reasonably established. This review presents a systematic summary of the experimental and data processing methods in in-situ characterizations of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy and Raman spectroscopy during the pretreatment of Fe-based FTS catalysts. These characterizations can clarify the complex structure and surface property changes of catalyst precursors and thus will facilitate the design and development of more efficient Fe-based FTS catalysts.

  • loading
  • [1]
    温晓东, 杨勇, 相宏伟, 焦海军, 李永旺. 费托合成铁基催化剂的设计基础: 从理论走向实践[J]. 中国科学: 化学,2017,47(11):1298−1311. doi: 10.1360/N032017-00111

    WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for Fischer-Tropsch synthesis: from theory to practice[J]. Sci Sin: Chim,2017,47(11):1298−1311. doi: 10.1360/N032017-00111
    [2]
    TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [3]
    MA W, JACOBS G, SPARKS D E, TODIC B, BUKUR D B, DAVIS B H. Quantitative comparison of iron and cobalt based catalysts for the Fischer-Tropsch synthesis under clean and poisoning conditions[J]. Catal Today,2020,343:125−136. doi: 10.1016/j.cattod.2019.04.011
    [4]
    PHIENLUPHON R, AI P, GAO X, YONEYAMA Y, REUBROYCHAROEN P, VITIDSANT T, TSUBAKI N. Direct fabrication of catalytically active FexC sites by sol-gel autocombustion for preparing Fischer-Tropsch synthesis catalysts without reduction[J]. Catal Sci Technol,2016,6(20):7597−7603. doi: 10.1039/C6CY01383J
    [5]
    OPEYEMI OTUN K, YAO Y, LIU X, HILDEBRANDT D. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review[J]. Fuel,2021,296:120689−120711. doi: 10.1016/j.fuel.2021.120689
    [6]
    MAHAJAN D, GÜTLICH P, STUMM U. The role of nano-sized iron particles in slurry phase Fischer-Tropsch synthesis[J]. Catal Commun,2003,4(3):101−107. doi: 10.1016/S1566-7367(03)00002-5
    [7]
    SCHULZ H. Selforganization in Fischer-Tropsch synthesis with iron and cobalt catalysts[J]. Catal Today,2014,228:113−122. doi: 10.1016/j.cattod.2013.11.060
    [8]
    ANDERSON R B, HOFER L J E, COHN E M, SELIGMAN B. Studies of the Fischer-Tropsch synthesis. 9. phase changes of iron catalysts in the synthesis[J]. J Am Chem Soc,1951,73(3):944−946. doi: 10.1021/ja01147a016
    [9]
    JIN Y, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction[J]. J Catal,2000,196(1):8−17. doi: 10.1006/jcat.2000.3024
    [10]
    BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J, RAO K R P M, HUFFMAN G P. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: I. characterization studies[J]. J Catal,1995,155(2):353−365. doi: 10.1006/jcat.1995.1217
    [11]
    CHANG Q, ZHANG C, LIU C, WEI Y, CHERUVATHUR A V, DUGULAN A I, NIEMANTSVERDRIET J W, LIU X, HE Y, QING M, ZHENG L, YUN Y, YANG Y, LI Y. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catal,2018,8(4):3304−3316. doi: 10.1021/acscatal.7b04085
    [12]
    WEZENDONK T A, SUN X, DUGULAN A I, VAN HOOF A J F, HENSEN E J M, KAPTEIJN F, GASCON J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis[J]. J Catal,2018,362:106−117. doi: 10.1016/j.jcat.2018.03.034
    [13]
    BOELLAARD E, VAN DER KRAAN A M, GEUS J W. Behaviour of a cyanide-derived Fe/Al2O3 catalyst during Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,1996,147(1):229−245. doi: 10.1016/S0926-860X(96)00192-5
    [14]
    DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [15]
    YU G, SUN B, PEI Y, XIE S, YAN S, QIAO M, FAN K, ZHANG X, ZONG B. Supporting information for FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis[J]. J Am Chem Soc,2010,132(3):935−937. doi: 10.1021/ja906370b
    [16]
    PAYNE J L, GIAGLOGLOU K, CARINS G M, CROUCH C J, PERCIVAL J D, SMITH R I, GOVER R K B, IRVINE J T S. In-situ studies of high temperature thermal batteries: A perspective[J]. Front Energy Res,2018,6:121−127. doi: 10.3389/fenrg.2018.00121
    [17]
    PALOMARES V, SHARMA N. EDITORIAL: In-situ and in-operando techniques for material characterizations during battery operation[J]. Front Energy Res,2019,7:10−12. doi: 10.3389/fenrg.2019.00010
    [18]
    LU F, CHEN X, LEI Z, WEN L, ZHANG Y. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2021,281:119521−119531. doi: 10.1016/j.apcatb.2020.119521
    [19]
    DE SMIT E, DE GROOT F M F, BLUME R, HÄVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys,2010,12(3):667−680. doi: 10.1039/B920256K
    [20]
    POLING G W. Infrared reflection studies of the oxidation of copper and iron[J]. J Electrochem Soc,1969,116(7):958−963. doi: 10.1149/1.2412184
    [21]
    RENDON J L, SERNA C J. IR spectra of powder hematite: Effects of particle size and shape[J]. Clay Miner,1981,16(4):375−382. doi: 10.1180/claymin.1981.016.4.06
    [22]
    HEXANA W M, COVILLE N J. Indium as a chemical promoter in Fe-based Fischer-Tropsch synthesis[J]. Appl Catal A:Gen,2010,377(1):150−157.
    [23]
    MCINTYRE N S, ZETARUK D G. X-ray photoelectron spectroscopic studies of iron oxides[J]. Anal Chem,1977,49(11):1521−1529. doi: 10.1021/ac50019a016
    [24]
    DE FARIA D L A, VENÂNCIO SILVA S, DE OLIVEIRA M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J Raman Spectrosc,1997,28(11):873−878. doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
    [25]
    RIETVELD H. A profile refinement method for nuclear and magnetic structures[J]. J Appl Crystallogr,1969,2(2):65−71. doi: 10.1107/S0021889869006558
    [26]
    DU H, ZHU H, ZHAO Z, DONG W, LUO W, LU W, JIANG M, LIU T, DING Y. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Appl Catal A: Gen,2016,523:263−271. doi: 10.1016/j.apcata.2016.06.022
    [27]
    SHI B, ZHANG Z, ZHA B, LIU D. Structure evolution of spinel Fe-MII (M=Mn, Fe, Co, Ni) ferrite in CO hydrogeneration[J]. Mol Catal,2018,456:31−37. doi: 10.1016/j.mcat.2018.06.019
    [28]
    YANG Z, LUO M, LIU Q, SHI B. In situ XRD and Raman investigation of the activation process over K-Cu-Fe/SiO2 catalyst for Fischer-Tropsch synthesis reaction[J]. Catal Lett,2020,150(8):2437−2445. doi: 10.1007/s10562-020-03147-6
    [29]
    LI J, ZHANG C, CHENG X, QING M, XU J, WU B, YANG Y, LI Y. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen,2013,464−465:10−19. doi: 10.1016/j.apcata.2013.04.042
    [30]
    GOVENDER A, OLIVIER E J, CARLESCHI E, PRESTAT E, HAIGH S J, VAN RENSBURG H, DOYLE B P, BARNARD W, FORBES R P, NEETHLING J H, VAN STEEN E. Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reduction[J]. Mater Charact,2019,155:109806−109817. doi: 10.1016/j.matchar.2019.109806
    [31]
    ZHANG L, WANG H, YANG C, LI X, SUN J, WANG H, GAO P, SUN Y. The rare earth elements modified FeK/Al2O3 catalysts for direct CO2 hydrogenation to liquid hydrocarbons[J]. Catal Today,2020,356:613−621. doi: 10.1016/j.cattod.2019.11.006
    [32]
    ZHANG Z, LIU Y, JIA L, SUN C, CHEN B, LIU R, TAN Y, TU W. Effects of the reducing gas atmosphere on performance of FeCeNa catalyst for the hydrogenation of CO2 to olefins[J]. Chem Eng J,2022,428:131388−131399. doi: 10.1016/j.cej.2021.131388
    [33]
    NIELSEN M R, MOSS A B, BJØRNLUND A S, LIU X, KNOP-GERICKE A, KLYUSHIN A Y, GRUNWALDT J D, SHEPPARD T L, DORONKIN D E, ZIMINA A, SMITSHUYSEN T E L, DAMSGAARD C D, WAGNER J B, HANSEN T W. Reduction and carburization of iron oxides for Fischer-Tropsch synthesis[J]. J Energy Chem,2020,51:48−61. doi: 10.1016/j.jechem.2020.03.026
    [34]
    SUN X, LIU X, LIU J, HE Y, YIN J, SONG C, LV Z, BAI Y, LI Y W, YANG Y, WEN X D. Elucidation of the influence of Cu promoter on carburization prior to iron-based Fischer-Tropsch synthesis: An in situ X-ray diffraction study[J]. ChemCatChem,2019,11(2):715−723. doi: 10.1002/cctc.201801706
    [35]
    NIU L, LIU X, LIU X, LV Z, ZHANG C, WEN X, YANG Y, LI Y, XU J. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts[J]. ChemCatChem,2017,9(9):1691−1700. doi: 10.1002/cctc.201601665
    [36]
    FADLALLA M I, GANESH BABU S, NYATHI T M, KEES-JAN WESTSTRATE C J, FISCHER N, HANS NIEMANTSVERDRIET J W, CLAEYS M. Enhanced oxygenates formation in the Fischer-Tropsch synthesis over Co- and/or Ni-containing Fe alloys: Characterization and 2D gas chromatographic product analysis[J]. ACS Catal,2020,10(24):14661−14677. doi: 10.1021/acscatal.0c03346
    [37]
    郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009

    GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, LÜ Zheng-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. J Fuel Chem Technol,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009
    [38]
    THÜNE P, MOODLEY P, SCHEIJEN F, FREDRIKSSON H, LANCEE R, KROPF J, MILLER J, NIEMANTSVERDRIET J W. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy[J]. J Phys Chem C,2012,116(13):7367−7373. doi: 10.1021/jp210754k
    [39]
    DE SMIT E, CINQUINI F, BEALE A M, SAFONOVA O V, VAN BEEK W, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μc[J]. J Am Chem Soc,2010,132(42):14928−14941. doi: 10.1021/ja105853q
    [40]
    PEÑA D, JENSEN L, COGNIGNI A, MYRSTAD R, NEUMAYER T, VAN BEEK W, RØNNING M. The effect of copper loading on iron carbide formation and surface species in iron-based Fischer-Tropsch synthesis catalysts[J]. ChemCatChem,2018,10(6):1300−1312. doi: 10.1002/cctc.201701673
    [41]
    DAMSGAARD C D, ZANDBERGEN H, W. HANSEN T, CHORKENDORFF I, B. WAGNER J. Controlled environment specimen transfer[J]. Microsc Microanal,2014,20(4):1038−1045. doi: 10.1017/S1431927614000853
    [42]
    ZHENG H, SMITH R K, JUN Y W, KISIELOWSKI C, DAHMEN U, ALIVISATOS A P. Observation of single colloidal platinum nanocrystal growth trajectories[J]. Science,2009,324(5932):1309−1312. doi: 10.1126/science.1172104
    [43]
    WAGNER J B, CAVALCA F, DAMSGAARD C D, DUCHSTEIN L D, HANSEN T W. Exploring the environmental transmission electron microscope[J]. Micron,2012,43(11):1169−1175. doi: 10.1016/j.micron.2012.02.008
    [44]
    KONOPATSKY A S, FIRESTEIN K L, EVDOKIMENKO N D, KUSTOV A L, BAIDYSHEV V S, CHEPKASOV I Y V, POPOV Z I, MATVEEV A T, SHETININ I V, LEYBO D V, VOLKOV I N, KOVALSKII A M, GOLBERG D, SHTANSKY D V. Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights[J]. J Catal,2021,402:130−142. doi: 10.1016/j.jcat.2021.08.026
    [45]
    JANBROERS S, LOUWEN J N, ZANDBERGEN H W, KOOYMAN P J. Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD[J]. J Catal,2009,268(2):235−242. doi: 10.1016/j.jcat.2009.09.021
    [46]
    ZHU W, WINTERSTEIN J P, YANG W D, YUAN L, SHARMA R, ZHOU G. In situ atomic-scale probing of the reduction dynamics of two-dimensional Fe2O3 nanostructures[J]. ACS Nano,2017,11(1):656−664. doi: 10.1021/acsnano.6b06950
    [47]
    LIU X, ZHANG C, LI Y, NIEMANTSVERDRIET J W, WAGNER J B, HANSEN T W. Environmental transmission electron microscopy (ETEM) studies of single iron nanoparticle carburization in synthesis gas[J]. ACS Catal,2017,7(7):4867−4875. doi: 10.1021/acscatal.7b00946
    [48]
    BONIFACIO C S, DAS G, KENNEDY I M, VAN BENTHEM K. Reduction reactions and densification during in situ TEM heating of iron oxide nanochains[J]. J Appl Phys,2017,122(23):234303−234310. doi: 10.1063/1.5004092
    [49]
    JACOBS G, MA W, GAO P, TODIC B, BHATELIA T, BUKUR D B, DAVIS B H. The application of synchrotron methods in characterizing iron and cobalt Fischer–Tropsch synthesis catalysts[J]. Catal Today,2013,214:100−139. doi: 10.1016/j.cattod.2013.05.011
    [50]
    NGUYEN L, TAO F F, TANG Y, DOU J, BAO X-J. Understanding catalyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy[J]. Chem Rev,2019,119(12):6822−6905. doi: 10.1021/acs.chemrev.8b00114
    [51]
    ZHANG S, SHAN J-J, ZHU Y, FRENKEL A I, PATLOLLA A, HUANG W, YOON S J, WANG L, YOSHIDA H, TAKEDA S, TAO F. WGS catalysis and in situ studies of CoO1–x, PtCon/Co3O4, and PtmCom/CoO1–x nanorod catalysts[J]. J Am Chem Soc,2013,135(22):8283−8293. doi: 10.1021/ja401967y
    [52]
    LU F, HUANG J, WU Q, ZHANG Y. Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins[J]. Appl Catal A: Gen,2021,621:118213−118220. doi: 10.1016/j.apcata.2021.118213
    [53]
    DE SMIT E, VAN SCHOONEVELD M M, CINQUINI F, BLUHM H, SAUTET P, DE GROOT F M F, WECKHUYSEN B M. On the surface chemistry of iron oxides in reactive gas atmospheres[J]. Angew Chem,2011,123(7):1622−1626. doi: 10.1002/ange.201005282
    [54]
    LOPEZ LUNA M, TIMOSHENKO J, KORDUS D, RETTENMAIER C, CHEE S W, HOFFMAN A S, BARE S R, SHAIKHUTDINOV S, ROLDAN CUENYA B. Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO2[J]. ACS Catal,2021,11(10):6175−6185. doi: 10.1021/acscatal.1c01549
    [55]
    CHEN L, YELON A, SACHER E. Surface chemistry and thermal stability of Fe nanoparticles annealed under ultrahigh-vacuum conditions[J]. J Phys Chem C,2011,115(26):12972−12980. doi: 10.1021/jp2028824
    [56]
    ZHANG J L, MA L H, FAN S B, ZHAO T S, SUN Y H. Synthesis of light olefins from CO hydrogenation over Fe-Mn catalysts: Effect of carburization pretreatment[J]. Fuel,2013,109:116−123. doi: 10.1016/j.fuel.2012.12.081
    [57]
    DONG Z, WANG T, ZHAO J, FU T, WANG L, LI J, DING W. Catalytic performance of iron oxide loaded on electron-rich surfaces of carbon nitride[J]. J Energy Chem,2016,25(6):1021−1026. doi: 10.1016/j.jechem.2016.10.005
    [58]
    NIU L, LIU X, LIU J, LIU X, WEN X, YANG Y, XU J, LI Y. Tuning carburization behaviors of metallic iron catalysts with potassium promoter and CO/syngas/C2H4/C2H2 gases[J]. J Catal,2019,371:333−345. doi: 10.1016/j.jcat.2019.02.013
    [59]
    RODULFO-BAECHLER S M, GONZÁLEZ-CORTÉS S L, OROZCO J, SAGREDO V, FONTAL B, MORA A J, DELGADO G. Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis[J]. Mater Lett,2004,58(20):2447−2450. doi: 10.1016/j.matlet.2004.02.032
    [60]
    BRAVO-SUÁREZ J J, SRINIVASAN P D. Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis[J]. Catal Rev Sci Eng,2017,59(4):295−445. doi: 10.1080/01614940.2017.1360071
    [61]
    MCNAB A I, MCCUE A J, DIONISI D, ANDERSON J A. Combined quantitative FTIR and online GC study of Fischer-Tropsch catalysts[J]. J Catal,2017,353:295−304. doi: 10.1016/j.jcat.2017.07.028
    [62]
    KOLLÁR M, DE STEFANIS A, SOLT H E, MIHÁLYI M R, VALYON J, TOMLINSON A A G. The mechanism of the Fischer-Tropsch reaction over supported cobalt catalysts[J]. J Mol Catal A: Chem,2010,333(1):37−45.
    [63]
    CHEN Y, QIU B, LIU Y, ZHANG Y. An active and stable nickel-based catalyst with embedment structure for CO2 methanation[J]. Appl Catal B: Environ,2020,269:118801−118810. doi: 10.1016/j.apcatb.2020.118801
    [64]
    LIU Y, LI Z, ZHANG Y. Selectively forming light olefins via macroporous iron-based Fischer-Tropsch catalysts[J]. React Kinet, Mech Catal,2016,119(2):457−468. doi: 10.1007/s11144-016-1064-z
    [65]
    LI L, HU C, LIU W, FEI P, CUI X, LI Y, XU J. The origin of Mo promotion during H2 pretreatment on an Fe catalyst for Fischer-Tropsch synthesis[J]. RSC Adv,2017,7(70):44474−44481. doi: 10.1039/C7RA07338K
    [66]
    HUTCHINGS G J, DESMARTIN-CHOMEL A, OLIER R, VOLTA J-C. Role of the product in the transformation of a catalyst to its active state[J]. Nature,1994,368(6466):41−45. doi: 10.1038/368041a0
    [67]
    ZHANG Y, FU D, XU X, SHENG Y, XU J, HAN Y-F. Application of operando spectroscopy on catalytic reactions[J]. Curr Opin Chem Eng,2016,12:1−7. doi: 10.1016/j.coche.2016.01.004
    [68]
    SATTLER J J H B, MENS A M, WECKHUYSEN B M. Real-Time Quantitative operando Raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor[J]. ChemCatChem,2014,6(11):3139−3145. doi: 10.1002/cctc.201402649
    [69]
    KATAGIRI G, ISHIDA H, ISHITANI A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565−571. doi: 10.1016/0008-6223(88)90157-1
    [70]
    李培侠, 曲龙梅, 张彩虹, 任晓波, 王会香, 张建利, 穆跃文, 吕宝亮. 原位拉曼光谱研究CO还原α-Fe2O3过程的晶面效应[J]. 燃料化学学报,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8

    LI Pei-xia, QU Long-mei, ZHANG Cai-hong, REN Xiao-bo, WANG Hui-xiang, ZHANG Jian-li, MU Yue-wen, LÜ Bao-Liang. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. J Fuel Chem Technol,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8
    [71]
    FU D, DAI W, XU X, MAO W, SU J, ZHANG Z, SHI B, SMITH J, LI P, XU J, HAN Y-F. Probing The structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem,2015,7(5):752−756. doi: 10.1002/cctc.201402980
    [72]
    HUANG J, JIANG S, WANG M, WANG X, GAO J, SONG C. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins[J]. ACS Sustainable Chem Eng,2021,9(23):7891−7903. doi: 10.1021/acssuschemeng.1c01777
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2648) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return